SNAS483F February   2010  – August 2015 ADC128D818

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 DC Electrical Characteristics
    6. 7.6 AC Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Supply Voltage (V+)
      2. 8.3.2 Voltage References (VREF)
      3. 8.3.3 Analog Inputs (IN0 - IN7)
        1. 8.3.3.1 Single-Ended Input
        2. 8.3.3.2 Pseudo-Differential Input
    4. 8.4 Device Functional Modes
      1. 8.4.1 Modes of Operation
    5. 8.5 Programming
      1. 8.5.1 Interface
        1. 8.5.1.1 Serial Bus Address
        2. 8.5.1.2 Time-out
          1. 8.5.1.2.1 Example Writes and Reads
    6. 8.6 Register Maps
      1. 8.6.1  ADC128D818 Internal Registers
      2. 8.6.2  Configuration Register — Address 00h
      3. 8.6.3  Interrupt Status Register — Address 01h
      4. 8.6.4  Interrupt Mask Register — Address 03h
      5. 8.6.5  Conversion Rate Register — Address 07h
      6. 8.6.6  Channel Disable Register — Address 08h
      7. 8.6.7  One-Shot Register — Address 09h
      8. 8.6.8  Deep Shutdown Register — Address 0Ah
      9. 8.6.9  Advanced Configuration Register — Address 0Bh
      10. 8.6.10 Busy Status Register — Address 0Ch
      11. 8.6.11 Channel Readings Registers — Addresses 20h - 27h
      12. 8.6.12 Limit Registers — Addresses 2Ah - 39h
      13. 8.6.13 Manufacturer ID Register — Address 3Eh
      14. 8.6.14 Revision ID Register — Addresses 3Fh
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Digital Output (DOUT)
      2. 9.1.2 Temperature Measurement System
        1. 9.1.2.1 Temperature Limits
      3. 9.1.3 Interrupt Structure
        1. 9.1.3.1 Interrupt Output (INT)
        2. 9.1.3.2 Interrupt Clearing
        3. 9.1.3.3 Temperature Interrupt
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Power Management
        2. 9.2.2.2 Using the ADC128D818
          1. 9.2.2.2.1 Quick Start
          2. 9.2.2.2.2 Poweron Reset (POR)
          3. 9.2.2.2.3 Configuration Register (address 00h)
          4. 9.2.2.2.4 Interrupt Status Register (address 01h)
          5. 9.2.2.2.5 Interrupt Mask Register (address 03h)
          6. 9.2.2.2.6 Conversion Rate Register (address 07h)
          7. 9.2.2.2.7 One-Shot Register (address 09h)
          8. 9.2.2.2.8 Deep Shutdown Register (address 0Ah)
          9. 9.2.2.2.9 Channel Readings Registers (addresses 20h - 27h)
      3. 9.2.3 Application Curve
    3. 9.3 System Examples
      1. 9.3.1 General Voltage Monitoring
      2. 9.3.2 Voltage Monitoring for Power Supplies
      3. 9.3.3 Temperature Sensors
      4. 9.3.4 Bridge Sensors
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(6)(3)(1)Æ(2)
MIN MAX UNIT
Supply Voltage (V+) 6.0 6 V
Voltage on SCL, SDA, A0, A1, INT –0.3 6 V
Voltage on IN0-IN7, VREF –0.3 (V+ + 0.3) V
Input Current at Any Pin(4) ±5 mA
Package Input Current(4) ±30 mA
Maximum Junction Temperature (TJMAX)(5) 150 °C
Storage Temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) For soldering specifications, SNOA549
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(4) If the input voltage at any pin exceeds the power supply ( that is, VIN < GND or VIN > V +) but is less than the absolute maximum ratings, then the current at that pin must be limited to 5 mA. The 30 mA maximum package input current rating limits the number of pins that can safely exceed the power supply with an input current of 5 mA to six pins. Parasitic components and/or ESD protection circuitry are shown in the Pin Descriptions table.
(5) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, RθJA and the ambient temperature, TA. The maximum allowable power dissipation at any temperature is PD = (TJMAX − T A) / RθJA.
(6) All voltages are measured with respect to GND, unless otherwise specified.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model ±300
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted(1)
MIN MAX UNIT
Supply Voltage (V+) 3 5.5 V
Voltage on SCL, SDA, A0, A1, INT –0.05 5.5 V
Voltage on IN0-IN7, VREF –0.05 (V+ + 0.05) V
Temperature Range for Electrical Characteristics –40 125 °C
Operating Temperature –40 125 °C
(1) All voltages are measured with respect to GND, unless otherwise specified.

7.4 Thermal Information

THERMAL METRIC(1) ADC128D818 UNIT
PW (TSSOP)
16 PINS
RθJA Junction-to-ambient thermal resistance 130 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 DC Electrical Characteristics

The following specifications apply for 3 VDC ≤ V+ ≤ 5.5 VDC , External VREF = 2.56 V, unless otherwise specified. All limits TA = TJ = 25°C unless otherwise specified(7).
PARAMETER TEST CONDITIONS MIN(6) TYP(5) MAX(6) UNIT
POWER SUPPLY CHARACTERISTICS
V+ Supply Voltage 3.3 or 5 V
TA = TJ = TMIN to TMAX 3 5.5
VREF External Reference Voltage 2.56 V
TA = TJ = TMIN to TMAX 1.25 V+
Internal Reference Voltage 2.56 V
23 ppm/°C
I+ Supply Current (see Power Management). Interface Inactive, V+ = 5.5 V, Mode 2 TA = TJ = TMIN to TMAX 0.74 mA
Interface Inactive, V+ = 3.6 V, Mode 2 TA = TJ = TMIN to TMAX 0.56 mA
Shutdown Mode, V+ = 5.5 V TA = TJ = TMIN to TMAX 0.65 mA
Shutdown Mode, V+ = 3.6 V TA = TJ = TMIN to TMAX 0.48 mA
Deep Shutdown Mode(1). TA = TJ = TMIN to TMAX 10 µA
TEMPERATURE-to-DIGITAL CONVERTER CHARACTERISTICS
Temperature Error –40°C ≤ TA ≤ +125°C TA = TJ = TMIN to TMAX ±3 °C
–25°C ≤ TA ≤ +100°C TA = TJ = TMIN to TMAX ±2 °C
Resolution 0.5 °C
ANALOG-to-DIGITAL CONVERTER CHARACTERISTICS
n Resolution 12-bit with full-scale at VREF = 2.56 V. 0.625 mV
INL Integral Non-Linearity External VREF = 1.25 V, Pseudo-Differential, V+ = 3 V to 3.3 V.(1) 0.36 LSb
TA = TJ = TMIN to TMAX –1 1
External VREF = 2.56 V, Pseudo-Differential 1.58 LSb
TA = TJ = TMIN to TMAX –2 4
External VREF = 5 V, Pseudo-Differential, V+ = 5 V to 5.5 V.
DNL Differential Non-Linearity See (2) ±0.25 LSb
TA = TJ = TMIN to TMAX –1 1
TUE Total Unadjusted Error(3) Internal VREF, Single-Ended, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.5 0.5 % of FS
Internal VREF, Single-Ended, V+ = 4.5 V to 5.5 V(4).
Internal VREF, Pseudo-Differential, V+ = 3 V to 3.6 V or V+ = 4.5 V to 5.5 V(4). TA = TJ = TMIN to TMAX –0.3 0.5 % of FS
External VREF = 1.25 V, Single-Ended, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.6 0.1 % of FS
External VREF = 2.56 V, Single-Ended, V+ = 3 V to 5.5 V. TA = TJ = TMIN to TMAX
External VREF = 1.25 V, Pseudo-Differential, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.45 0.2 % of FS
External VREF = 2.56 V, Pseudo-Differential, V+ = 3 V to 5.5 V. TA = TJ = TMIN to TMAX
GE Gain Error Internal VREF, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.25 0.45 % of FS
Internal VREF, V+ = 4.5 V to 5.5 V(4)
External VREF = 1.25 V or 2.56 V, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.45 0.2 % of FS
External VREF = 2.56 V or 5 V, V+ = 4.5 V to 5.5 V.
OE Offset Error Internal VREF, Pseudo-Differential,V+ = 4.5 V to 5.5 V(4). TA = TJ = TMIN to TMAX –0.15 0.2 % of FS
External VREF = 1.25 V or 2.56 V, Single-Ended, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.5 0.1 % of FS
External VREF = 2.56 V or 5 V, Single-Ended, V+ = 4.5 V to 5.5 V
External VREF = 1.25 V or 2.56 V, Pseudo-Differential, V+ = 3 V to 3.6 V. TA = TJ = TMIN to TMAX –0.2 0.15 % of FS
External VREF = 2.56 V or 5 V, Pseudo-Differential, V+ = 4.5 V to 5.5 V
tC Continuous Conversion Mode Each Enabled Voltage Channel 12 ms
Internal Temperature Sensor 3.6 ms
Low Power Conversion Mode Enabled Voltage Channel(s) and Internal Temperature Sensor 728 ms
MULTIPLEXER / ADC INPUT CHARACTERISTICS
RON ON-Resistance 2
TA = TJ = TMIN to TMAX 10
ION Input Current (On Channel Leakage Current) ±0.005 μA
IOFF Off Channel Leakage Current ±0.005 μA
DIGITAL OUTPUTS: INT
VOUT(0) Logical 0 Output Voltage IOUT = 5.0 mA at V+ = 4.5 V, IOUT = +3 mA at V+ = +3 V TA = TJ = TMIN to TMAX 0.4 V
OPEN DRAIN SERIAL BUS OUTPUT: SDA
VOUT(0) Logical 0 Output Voltage IOUT = 3.0 mA at V+ = 4.5 V, TA = TJ = TMIN to TMAX 0.4 V
IOH High Level Output Current VOUT = V+ 0.005 μA
TA = TJ = TMIN to TMAX 1
DIGITAL INPUTS: A0 and A1
VIN(1) Logical 1 Input Voltage TA = TJ = TMIN to TMAX 0.9 × V+ 5.5 V
VIM Logical Middle Input Voltage TA = TJ = TMIN to TMAX 0.43 × V+ 0.57 × V+
VIN(0) Logical 0 Input Voltage TA = TJ = TMIN to TMAX GND – 0.05 0.1 × V+ V
SERIAL BUS INPUTS: SCL and SDA
VIN(1) Logical 1 Input Voltage TA = TJ = TMIN to TMAX 0.7 × V+ 5.5 v
VIN(0) Logical 0 Input Voltage TA = TJ = TMIN to TMAX GND – 0.05 0.3 × V+ V
VHYST Hysteresis Voltage V+ = 3.3 V 0.67 V
V+ = 5.5 V 1.45 V
ALL DIGITAL INPUTS: SCL, SDA, A0, A1
IIN(1) Logical 1 Input Current VIN = V+ – 0.005 µA
TA = TJ = TMIN to TMAX −1
IIN(0) Logical 0 Input Current VIN = 0 VDC 0.005 µA
TA = TJ = TMIN to TMAX 1
CIN Digital Input Capacitance 20 pF
(1) Limit is specified by characterization.
(2) Limit is specified by design.
(3) TUE (Total Unadjusted Error) includes Offset, Gain and Linearity errors of the ADC.
(4) The range is up to 7/8 of full scale.
(5) Typicals are at TJ = TA = 25°C and represent most likely parametric normal.
(6) Limits are ensured to AOQL (Average Outgoing Quality Level).
(7) Each input and output is protected by an ESD structure to GND, as shown in the . Input voltage magnitude up to 0.3 V above V+ or 0.3 V below GND will not damage the ADC128D818. There are diodes that exist between some inputs and the power supply rails. Errors in the ADC conversion can occur if these diodes are forward biased by more than 50 mV. As an example, if V+ is 4.5 VDC, INx (where 0 ≤ x ≤ 7) must be ≤ 4.55 VDC to ensure accurate conversions.

7.6 AC Electrical Characteristics

The following specifications apply for +3.0 VDC ≤ V+ ≤ +5.5 VDC , unless otherwise specified. All limits TA = TJ = 25°C unless otherwise specified.
PARAMETER TEST CONDITIONS MIN(2) TYP(1) MAX(2) UNIT
SERIAL BUS TIMING CHARACTERISTICS
t1 SCL (Clock) Period TA = TJ = TMIN to TMAX 2.5 100 µs
t2 Data In Set-up Time to SCL High TA = TJ = TMIN to TMAX 100 ns
t3 Data Out Stable After SCL Low TA = TJ = TMIN to TMAX 0 ns
t4 SDA Low Set-up Time to SCL Low (start) TA = TJ = TMIN to TMAX 100 ns
t5 SDA High Hold Time After SCL High (stop) TA = TJ = TMIN to TMAX 100 ns
tTIME-OUT SCL or SDA time low for I2C bus reset TA = TJ = TMIN to TMAX 25 35 ms
(1) Typicals are at TJ = TA = 25°C and represent most likely parametric normal.
(2) Limits are ensured to AOQL (Average Outgoing Quality Level).
ADC128D818 30096326.pngFigure 1. Serial Bus Timing Diagram

7.7 Typical Characteristics

The following typical performance plots apply for the internal VREF = 2.56 V, V+ = 3.3 V, Pseudo-Differential connection, unless otherwise specified. All limits TA = TJ = 25°C unless otherwise specified.A
ADC128D818 30096346.gifFigure 2. TUE vs. Code
ADC128D818 30096348.gifFigure 4. TUE vs. Code (External VREF = 2.56 V)
ADC128D818 30096350.pngFigure 6. INL vs. Code (External VREF = 1.25 V for 1 Unit)
ADC128D818 30096351.pngFigure 8. INL vs. Code (External VREF = 2.56 V for 1 Unit)
ADC128D818 30096352.pngFigure 10. INL vs. Code (External VREF = 5 V, V+ = 5 V for 1 Unit)
ADC128D818 30096354.pngFigure 12. DNL vs. Code (External VREF = 2.56 V for 1 Unit)
ADC128D818 30096356.gifFigure 14. Offset Error vs. V+
ADC128D818 30096360.gifFigure 16. Gain Error vs. V+
ADC128D818 30096364.gifFigure 18. I+ vs. Temperature
ADC128D818 30096366.gifFigure 20. I+ vs. V+ for Voltage Conversion
ADC128D818 30096368.gifFigure 22. I+ vs. V+ in Shutdown Mode
ADC128D818 30096347.gifFigure 3. TUE vs. Code (External VREF = 1.25 V)
ADC128D818 30096349.gifFigure 5. TUE vs. Code (External VREF = 5 V, V+ = 5 V)
ADC128D818 30096371.pngFigure 7. INL vs. Code (External VREF = 1.25 V for 28 Units)
ADC128D818 30096372.pngFigure 9. INL vs. Code (External VREF = 2.56 V for 28 Units)
ADC128D818 30096373.pngFigure 11. INL vs. Code (External VREF = 5 V, V+ = 5 V for 28 Units)
ADC128D818 30096355.pngFigure 13. DNL vs. Code (External VREF = 2.56 V for 28 Units)
ADC128D818 30096358.gifFigure 15. Offset Error vs. Temperature
ADC128D818 30096362.gifFigure 17. Gain Error vs. Temperature
ADC128D818 30096365.gifFigure 19. I+ vs. V+ Typical
ADC128D818 30096367.gifFigure 21. I+ vs. V+ for Temperature Conversion
ADC128D818 30096369.gifFigure 23. I+ vs. V+ in Deep Shutdown Mode
A. Timing specifications are tested at the Serial Bus Input logic levels: V IN(0) = 0.3 × V + for a falling edge and V IN(1) = 0.7 × V + for a rising edge if the SCL and SDA edge rates are similar