SNAS333E August   2005  – December 2015 ADC128S052 , ADC128S052-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings - Commercial
    3. 6.3 ESD Ratings - Automotive
    4. 6.4 Recommended Operating Conditions
    5. 6.5 Thermal Information
    6. 6.6 Electrical Characteristics
    7. 6.7 Timing Specifications
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operation
      2. 7.3.2 Transfer Function
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Analog Inputs
      2. 8.1.2 Digital Inputs and Outputs
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequence
    2. 9.2 Power Supply Noise Considerations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
        1. 11.1.1.1 Specification Definitions
    2. 11.2 Related Links
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

See (1)(2)(3)
MIN MAX UNIT
Analog Supply Voltage VA –0.3 6.5 V
Digital Supply Voltage VD –0.3 VA + 0.3, max 6.5 V
Voltage on Any Pin to GND –0.3 VA + 0.3 V
Input Current at Any Pin(4) ±10 mA
Package Input Current(4) ±20 mA
Power Dissipation at TA = 25°C See (5)
Junction Temperature +150 °C
Storage Temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.
(3) For soldering specifications: see product folder at www.ti.com and SNOA549.
(4) When the input voltage at any pin exceeds the power supplies (that is, VIN < AGND or VIN > VA or VD), the current at that pin must be limited to 10 mA. The 20-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to two.
(5) The absolute maximum junction temperature (TJMAX) for this device is 150°C. The maximum allowable power dissipation is dictated by TJMAX, the junction-to-ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJMAX − TA)/RθJA. In the 16-pin TSSOP, RθJA is 110°C/W, so PDMAX = 1,200 mW at 25°C and 625 mW at the maximum operating ambient temperature of 105°C. Note that the power consumption of this device under normal operation is a maximum of
12 mW. The values for maximum power dissipation listed above is reached only when the ADC128S052 is operated in a severe fault condition (for example, when input or output pins are driven beyond the power supply voltages, or the power supply polarity is reversed). Such conditions must always be avoided.

6.2 ESD Ratings – Commercial

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) ±2500 V
Machine model (MM)(3) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor.
(3) Machine model is a 220-pF discharged through ZERO Ω.

6.3 ESD Ratings – Automotive

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2500 V
Charged-device model (CDM), per AEC Q100-011 ±250
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.4 Recommended Operating Conditions

See (1)
MIN NOM MAX UNIT
Operating Temperature ADC128S052 −40 TA 105 °C
ADC128S052-Q1 −40 TA 125 °C
VA Supply Voltage 2.7 5.25 V
VD Supply Voltage 2.7 VA V
Digital Input Voltage 0 VA V
Analog Input Voltage 0 VA V
Clock Frequency 50 1600 kHz
(1) All voltages are measured with respect to GND = 0 V, unless otherwise specified.

6.5 Thermal Information

THERMAL METRIC(1) ADC128S052, ADC128S052-Q1 UNIT
PW (TSSOP)
16 PINS
RθJA Junction-to-ambient thermal resistance 110 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 42 °C/W
RθJB Junction-to-board thermal resistance 56 °C/W
ψJT Junction-to-top characterization parameter 5 °C/W
ψJB Junction-to-board characterization parameter 55 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.6 Electrical Characteristics

The following specifications apply for AGND = DGND = 0 V, fSCLK = 3.2 MHz to 8 MHz, fSAMPLE = 200 kSPS to 500 kSPS, CL = 50 pF, unless otherwise noted. Maximum and minimum limits apply for TA = TMIN to TMAX: all other limits TA = 25°C.(2)
PARAMETER TEST CONDITIONS MIN TYP MAX(1) UNIT
STATIC CONVERTER CHARACTERISTICS
Resolution with No Missing Codes 12 Bits
INL Integral Non-Linearity (End Point Method) VA = VD = 3 V ±0.3 ±1 LSB
VA = VD = 5 V ±0.4 ±1 LSB
DNL Differential Non-Linearity VA = VD = 3 V 0.3 0.9 LSB
−0.7 −0.2 LSB
VA = VD = 5 V 0.6 1.3 LSB
−0.9 −0.4 LSB
VOFF Offset Error VA = VD = 3 V 0.8 ±2.3 LSB
VA = VD = 5 V 1.2 ±2.3 LSB
OEM Offset Error Match VA = VD = 3 V ±0.05 ±1.5 LSB
VA = VD = 5 V ±0.2 ±1.5 LSB
FSE Full Scale Error VA = VD = 3 V 0.6 ±2.0 LSB
VA = VD = 5 V 0.3 ±2.0 LSB
FSEM Full Scale Error Match VA = VD = 3 V ±0.05 ±1.5 LSB
VA = VD = 5 V ±0.2 ±1.5 LSB
DYNAMIC CONVERTER CHARACTERISTICS
FPBW Full Power Bandwidth (−3 dB) VA = VD = 3 V 8 MHz
VA = VD = 5 V 11 MHz
SINAD Signal-to-Noise Plus Distortion Ratio VA = VD = 3 V,
fIN = 40.2 kHz, −0.02 dBFS
70 73 dB
VA = VD = 5 V,
fIN = 40.2 kHz, −0.02 dBFS
70 73 dB
SNR Signal-to-Noise Ratio VA = VD = 3 V,
fIN = 40.2 kHz, −0.02 dBFS
70.8 73 dB
VA = VD = 5 V,
fIN = 40.2 kHz, −0.02 dBFS
70.8 73 dB
THD Total Harmonic Distortion VA = VD = 3 V,
fIN = 40.2 kHz, −0.02 dBFS
−90 −74 dB
VA = VD = 5 V,
fIN = 40.2 kHz, −0.02 dBFS
−89 −74 dB
SFDR Spurious-Free Dynamic Range VA = VD = 3 V,
fIN = 40.2 kHz, −0.02 dBFS
75 92 dB
VA = VD = 5 V,
fIN = 40.2 kHz, −0.02 dBFS
75 91 dB
ENOB Effective Number of Bits VA = VD = 3 V,
fIN = 40.2 kHz
11.3 11.8 Bits
VA = VD = 5 V,
fIN = 40.2 kHz, −0.02 dBFS
11.3 11.8 Bits
ISO Channel-to-Channel Isolation VA = VD = 3 V,
fIN = 20 kHz
81 dB
VA = VD = 5 V,
fIN = 20 kHz, −0.02 dBFS
81 dB
IMD Intermodulation Distortion, Second Order Terms VA = VD = 3 V,
fa = 19.5 kHz, fb = 20.5 kHz
−98 dB
VA = VD = 5 V,
fa = 19.5 kHz, fb = 20.5 kHz
−91 dB
Intermodulation Distortion, Third Order Terms VA = VD = 3 V,
fa = 19.5 kHz, fb = 20.5 kHz
−89 dB
VA = VD = 5 V,
fa = 19.5 kHz, fb = 20.5 kHz
−88 dB
ANALOG INPUT CHARACTERISTICS
VIN Input Range 0 VA V
IDCL DC Leakage Current ±1 µA
CINA Input Capacitance Track Mode 33 pF
Hold Mode 3 pF
DIGITAL INPUT CHARACTERISTICS
VIH Input High Voltage VA = VD = 2.7 V to 3.6 V 2.1 V
VA = VD = 4.75 V to 5.25 V 2.4 V
VIL Input Low Voltage VA = VD = 2.7 V to 5.25 V 0.8 V
IIN Input Current VIN = 0 V or VD ±0.01 ±1 µA
CIND Digital Input Capacitance 2 4 pF
DIGITAL OUTPUT CHARACTERISTICS
VOH Output High Voltage ISOURCE = 200 µA,
VA = VD = 2.7 V to 5.25 V
VD − 0.5 V
VOL Output Low Voltage ISINK = 200 µA to 1.0 mA,
VA = VD = 2.7 V to 5.25 V
0.4 V
IOZH, IOZL Hi-Impedance Output Leakage Current VA = VD = 2.7 V to 5.25 V ±1 µA
COUT Hi-Impedance Output Capacitance(2) 2 4 pF
Output Coding Straight (Natural) Binary
POWER SUPPLY CHARACTERISTICS (CL = 10 pF)
VA, VD Analog and Digital Supply Voltages VA ≥ VD 2.7 5.25 V
IA + ID Total Supply Current
Normal Mode ( CS low)
VA = VD = 2.7 V to 3.6 V,
fSAMPLE = 500 kSPS, fIN = 40 kHz
0.54 1.2 mA
VA = VD = 4.75 V to 5.25 V,
fSAMPLE = 500 kSPS, fIN = 40 kHz
1.74 2.6 mA
Total Supply Current
Shutdown Mode (CS high)
VA = VD = 2.7 V to 3.6 V,
fSCLK = 0 kSPS
20 nA
VA = VD = 4.75 V to 5.25 V,
fSCLK = 0 kSPS
50 nA
PC Power Consumption
Normal Mode ( CS low)
VA = VD = 3 V
fSAMPLE = 500 kSPS, fIN = 40 kHz
1.6 3.6 mW
VA = VD = 5.0 V
fSAMPLE = 500 kSPS, fIN = 40 kHz
8.7 13.0 mW
Power Consumption
Shutdown Mode (CS high)
VA = VD = 3 V
fSCLK = 0 kSPS
0.06 µW
VA = VD = 5 V
fSCLK = 0 kSPS
0.25 µW
AC ELECTRICAL CHARACTERISTICS
fSCLKMIN Minimum Clock Frequency VA = VD = 2.7 V to 5.25 V 3.2 0.8 MHz
fSCLK Maximum Clock Frequency VA = VD = 2.7 V to 5.25 V 16 8 MHz
fS Sample Rate
Continuous Mode
VA = VD = 2.7 V to 5.25 V 200 50 kSPS
1000 500 kSPS
tCONVERT Conversion (Hold) Time VA = VD = 2.7 V to 5.25 V 13 SCLK cycles
DC SCLK Duty Cycle VA = VD = 2.7 V to 5.25 V 40% 30%
70% 60%
tACQ Acquisition (Track) Time VA = VD = 2.7 V to 5.25 V 3 SCLK cycles
Throughput Time Acquisition Time + Conversion Time
VA = VD = 2.7 V to 5.25 V
16 SCLK cycles
tAD Aperture Delay VA = VD = 2.7 V to 5.25 V 4 ns
(1) Tested limits are ensured to TI's AOQL (Average Outgoing Quality Level).
(2) Data sheet minimum and maximum specification limits are ensured by design, test, or statistical analysis.

6.7 Timing Specifications

The following specifications apply for VA = VD = 2.7 V to 5.25 V, AGND = DGND = 0 V, fSCLK = 3.2 MHz to 8 MHz, fSAMPLE = 200 kSPS to 500 kSPS, and CL = 50 pF. Maximum and minimum limits apply for TA = TMIN to TMAX; all other limits TA = 25°C. See Figure 1, Figure 2, and Figure 3.
MIN NOM MAX(1) UNIT
tCSH CS Hold Time after SCLK Rising Edge 10 0 ns
tCSS CS Set-up Time prior to SCLK Rising Edge 10 4.5 ns
tEN CS Falling Edge to DOUT enabled 5 30 ns
tDACC DOUT Access Time after SCLK Falling Edge 17 27 ns
tDHLD DOUT Hold Time after SCLK Falling Edge 4 ns
tDS DIN Set-up Time prior to SCLK Rising Edge 10 3 ns
tDH DIN Hold Time after SCLK Rising Edge 10 3 ns
tCH SCLK High Time 0.4 × tSCLK ns
tCL SCLK Low Time 0.4 × tSCLK ns
tDIS CS Rising Edge to DOUT High-Impedance DOUT falling 2.4 20 ns
DOUT rising 0.9 20 ns
(1) Tested limits are ensured to TI's AOQL (Average Outgoing Quality Level).
ADC128S052 ADC128S052-Q1 20162651.gif Figure 1. ADC128S052 Operational Timing Diagram
ADC128S052 ADC128S052-Q1 20162606.gif Figure 2. ADC128S052 Serial Timing Diagram
ADC128S052 ADC128S052-Q1 20162650.gif Figure 3. SCLK and CS Timing Parameters

6.8 Typical Characteristics

TA = 25°C, fSAMPLE = 500 kSPS, fSCLK = 8 MHz, fIN = 40.2 kHz unless otherwise stated
ADC128S052 ADC128S052-Q1 20162640.png Figure 4. DNL
ADC128S052 ADC128S052-Q1 20162642.png Figure 6. INL
ADC128S052 ADC128S052-Q1 20162641.png Figure 5. DNL
ADC128S052 ADC128S052-Q1 20162643.png Figure 7. INL
ADC128S052 ADC128S052-Q1 20162621.png Figure 8. DNL vs Supply
ADC128S052 ADC128S052-Q1 20162622.png Figure 10. SNR vs Supply
ADC128S052 ADC128S052-Q1 20162633.png
Figure 12. ENOB vs Supply
ADC128S052 ADC128S052-Q1 20162631.png
VA = 5 V
Figure 14. INL vs VD
ADC128S052 ADC128S052-Q1 20162658.png Figure 16. INL vs SCLK Duty Cycle
ADC128S052 ADC128S052-Q1 20162664.png Figure 18. THD vs SCLK Duty Cycle
ADC128S052 ADC128S052-Q1 20162656.png Figure 20. DNL vs SCLK
ADC128S052 ADC128S052-Q1 20162662.png Figure 22. SNR vs SCLK
ADC128S052 ADC128S052-Q1 20162653.png Figure 24. ENOB vs SCLK
ADC128S052 ADC128S052-Q1 20162660.png Figure 26. INL vs Temperature
ADC128S052 ADC128S052-Q1 20162666.png Figure 28. THD vs Temperature
ADC128S052 ADC128S052-Q1 20162623.png Figure 30. SNR vs Input Frequency
ADC128S052 ADC128S052-Q1 20162625.png Figure 32. ENOB vs Input Frequency
ADC128S052 ADC128S052-Q1 20162620.png Figure 9. INL vs Supply
ADC128S052 ADC128S052-Q1 20162632.png Figure 11. THD vs Supply
ADC128S052 ADC128S052-Q1 20162630.png
VA = 5 V
Figure 13. DNL vs VD
ADC128S052 ADC128S052-Q1 20162655.png
Figure 15. DNL vs SCLK Duty Cycle
ADC128S052 ADC128S052-Q1 20162661.png Figure 17. SNR vs SCLK Duty Cycle
ADC128S052 ADC128S052-Q1 20162652.png Figure 19. ENOB vs SCLK Duty Cycle
ADC128S052 ADC128S052-Q1 20162659.png Figure 21. INL vs SCLK
ADC128S052 ADC128S052-Q1 20162665.png Figure 23. THD vs SCLK
ADC128S052 ADC128S052-Q1 20162657.png Figure 25. DNL vs Temperature
ADC128S052 ADC128S052-Q1 20162663.png Figure 27. SNR vs Temperature
ADC128S052 ADC128S052-Q1 20162654.png Figure 29. ENOB vs Temperature
ADC128S052 ADC128S052-Q1 20162624.png Figure 31. THD vs Input Frequency
ADC128S052 ADC128S052-Q1 20162644.png Figure 33. Power Consumption vs SCLK