ZHCSPP4A june   2022  – july 2023 ADC12QJ1600-SP

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 说明(续)
  6. Revision History
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: DC Specifications
    6. 7.6  Electrical Characteristics: Power Consumption
    7. 7.7  Electrical Characteristics: AC Specifications
    8. 7.8  Switching Characteristics
    9. 7.9  Timing Requirements
    10. 7.10 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Input
        1. 8.3.1.1 Analog Input Protection
        2. 8.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 8.3.1.3 Analog Input Offset Adjust
        4. 8.3.1.4 ADC Core
          1. 8.3.1.4.1 ADC Theory of Operation
          2. 8.3.1.4.2 ADC Core Calibration
          3. 8.3.1.4.3 Analog Reference Voltage
          4. 8.3.1.4.4 ADC Over-range Detection
          5. 8.3.1.4.5 Code Error Rate (CER)
      2. 8.3.2 Temperature Monitoring Diode
      3. 8.3.3 Timestamp
      4. 8.3.4 Clocking
        1. 8.3.4.1 Converter PLL (C-PLL) for Sampling Clock Generation
        2. 8.3.4.2 LVDS Clock Outputs (PLLREFO±, TRIGOUT±)
        3. 8.3.4.3 Optional CMOS Clock Outputs (ORC, ORD)
        4. 8.3.4.4 SYSREF for JESD204C Subclass-1 Deterministic Latency
          1. 8.3.4.4.1 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          2. 8.3.4.4.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      5. 8.3.5 JESD204C Interface
        1. 8.3.5.1  Transport Layer
        2. 8.3.5.2  Scrambler
        3. 8.3.5.3  Link Layer
        4. 8.3.5.4  8B or 10B Link Layer
          1. 8.3.5.4.1 Data Encoding (8B or 10B)
          2. 8.3.5.4.2 Multiiframes and the Local Multiframe Clock (LMFC)
          3. 8.3.5.4.3 Code Group Synchronization (CGS)
          4. 8.3.5.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 8.3.5.4.5 Frame and Multiframe Monitoring
        5. 8.3.5.5  64B or 66B Link Layer
          1. 8.3.5.5.1 64B or 66B Encoding
          2. 8.3.5.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
            1. 8.3.5.5.2.1 Block, Multiblock and Extended Multiblock Alignment using Sync Header
              1. 8.3.5.5.2.1.1 Cyclic Redundancy Check (CRC) Mode
              2. 8.3.5.5.2.1.2 Forward Error Correction (FEC) Mode
          3. 8.3.5.5.3 Initial Lane Alignment
          4. 8.3.5.5.4 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 8.3.5.6  Physical Layer
          1. 8.3.5.6.1 SerDes Pre-Emphasis
        7. 8.3.5.7  JESD204C Enable
        8. 8.3.5.8  Multi-Device Synchronization and Deterministic Latency
        9. 8.3.5.9  Operation in Subclass 0 Systems
        10. 8.3.5.10 Alarm Monitoring
          1. 8.3.5.10.1 Clock Upset Detection
          2. 8.3.5.10.2 FIFO Upset Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Power Mode and High Performance Mode
      2. 8.4.2 JESD204C Modes
        1. 8.4.2.1 JESD204C Transport Layer Data Formats
        2. 8.4.2.2 64B or 66B Sync Header Stream Configuration
        3. 8.4.2.3 Redundant Data Mode (Alternate Lanes)
      3. 8.4.3 Power-Down Modes
      4. 8.4.4 Test Modes
        1. 8.4.4.1 Serializer Test-Mode Details
        2. 8.4.4.2 PRBS Test Modes
        3. 8.4.4.3 Clock Pattern Mode
        4. 8.4.4.4 Ramp Test Mode
        5. 8.4.4.5 Short and Long Transport Test Mode
          1. 8.4.4.5.1 Short Transport Test Pattern
        6. 8.4.4.6 D21.5 Test Mode
        7. 8.4.4.7 K28.5 Test Mode
        8. 8.4.4.8 Repeated ILA Test Mode
        9. 8.4.4.9 Modified RPAT Test Mode
      5. 8.4.5 Calibration Modes and Trimming
        1. 8.4.5.1 Foreground Calibration Mode
        2. 8.4.5.2 Background Calibration Mode
        3. 8.4.5.3 Low-Power Background Calibration (LPBG) Mode
      6. 8.4.6 Offset Calibration
      7. 8.4.7 Trimming
    5. 8.5 Programming
      1. 8.5.1 Using the Serial Interface
      2. 8.5.2 SCS
      3. 8.5.3 SCLK
      4. 8.5.4 SDI
      5. 8.5.5 SDO
      6. 8.5.6 Streaming Mode
      7. 8.5.7 SPI_Register_Map Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Light Detection and Ranging (LiDAR) Digitizer
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Analog Front-End Requirements
          2. 9.2.1.2.2 Calculating Clock and SerDes Frequencies
        3. 9.2.1.3 Application Curves
    3. 9.3 Initialization Set Up
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Power Sequencing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • ALR|144
散热焊盘机械数据 (封装 | 引脚)
订购信息
Block, Multiblock and Extended Multiblock Alignment using Sync Header

The sync header contains two bits that are always opposite of each other (either 01 or 10). The JESD204C receiver can find the block boundaries by looking for a 66-bit boundary that always contains a 0 to 1 or 1 to 0 transition. Although 0 to 1 and 1 to 0 transitions occur at other locations in a block, it is impossible for the sequence to appear at a fixed location, other than the proper sync header location, in successive blocks for a long period of time. The sync header indicates the start of a block and can be used for block alignment monitoring. If a 00 or a 11 bit sequence is seen at the assumed sync header location of a block, then block alignment may have been lost. Multiple occurrences of incorrect sync header bits should trigger a search for the sync header after sending SYSREF to all devices to reset LEMC alignment.

A sync header ([0:1]) of 01 corresponds to transmission of a 1 while a sync header of 10 corresponds to a transmission of a 0. The transmitted bit from the sync header of each block of a multiblock are combined into a 32-bit word called the sync header stream. The sync header stream is used to transmit data in parallel with the user data in order to synchronize the link by marking the borders of multiblocks and extended multiblocks. In addition, the sync header stream provides one of either CRC, FEC or a command channel. ADC12QJ1600-SP supports CRC-12 and FEC and does not support CRC-3 or the command channel.

The 32-bit sync header stream always ends with a 00001 bit sequence, called the end-of-multiblock (EoMB) signal, that indicates the end of a multiblock. For CRC and command channel modes, a 00001 sequence never occur in any other location in the sync header stream. For FEC mode, it is possible for a 00001 sequence to appear in another location within the sync header stream, however it is improbable to see the 00001 sequence in the same location within a sequence of multiple multiblocks. Therefore, in FEC mode it may take more than one multiblock to find the end of a multiblock. The end of an extended multiblock is found for all modes by monitoring bit 22 of the sync header stream, the EoEMB bit, which indicates the end of an extended multiblock when set to a 1. The EoMB (00001) and EoEMB signals, as well as fixed 1s in the sync header stream for CRC and command channel modes, form the pilot signal of the sync header stream.

The defined format for each form of the sync header stream are defined in the following sections.