ZHCSHA5E july   2010  – july 2023 ADS1013-Q1 , ADS1014-Q1 , ADS1015-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6.   Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements: I2C
    7. 6.7 Timing Diagram
    8. 6.8 Typical Characteristics
  9. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagrams
    3. 7.3 Feature Description
      1. 7.3.1 Multiplexer
      2. 7.3.2 Analog Inputs
      3. 7.3.3 Full-Scale Range (FSR) and LSB Size
      4. 7.3.4 Voltage Reference
      5. 7.3.5 Oscillator
      6. 7.3.6 Output Data Rate and Conversion Time
      7. 7.3.7 Digital Comparator (ADS1014-Q1 and ADS1015-Q1 Only)
      8. 7.3.8 Conversion Ready Pin (ADS1014-Q1 and ADS1015-Q1 Only)
      9. 7.3.9 SMbus Alert Response
    4. 7.4 Device Functional Modes
      1. 7.4.1 Reset and Power-Up
      2. 7.4.2 Operating Modes
        1. 7.4.2.1 Single-Shot Mode
        2. 7.4.2.2 Continuous-Conversion Mode
      3. 7.4.3 Duty Cycling For Low Power
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 I2C Address Selection
        2. 7.5.1.2 I2C General Call
        3. 7.5.1.3 I2C Speed Modes
      2. 7.5.2 Target Mode Operations
        1. 7.5.2.1 Receive Mode
        2. 7.5.2.2 Transmit Mode
      3. 7.5.3 Writing To and Reading From the Registers
      4. 7.5.4 Data Format
    6. 7.6 Register Map
      1. 7.6.1 Address Pointer Register (address = N/A) [reset = N/A]
      2. 7.6.2 Conversion Register (P[1:0] = 00b) [reset = 0000h]
      3. 7.6.3 Config Register (P[1:0] = 01b) [reset = 8583h]
      4. 7.6.4 Lo_thresh (P[1:0] = 10b) [reset = 8000h] and Hi_thresh (P[1:0] = 11b) [reset = 7FFFh] Registers
  10. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Basic Connections
      2. 8.1.2 Single-Ended Inputs
      3. 8.1.3 Input Protection
      4. 8.1.4 Unused Inputs and Outputs
      5. 8.1.5 Analog Input Filtering
      6. 8.1.6 Connecting Multiple Devices
      7. 8.1.7 Quick-Start Guide
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Shunt Resistor Considerations
        2. 8.2.2.2 Operational Amplifier Considerations
        3. 8.2.2.3 ADC Input Common-Mode Considerations
        4. 8.2.2.4 Resistor (R1, R2, R3, R4) Considerations
        5. 8.2.2.5 Noise and Input Impedance Considerations
        6. 8.2.2.6 First-Order RC Filter Considerations
        7. 8.2.2.7 Circuit Implementation
        8. 8.2.2.8 Results Summary
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power-Supply Sequencing
      2. 8.3.2 Power-Supply Decoupling
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  11. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 Trademarks
    5. 9.5 静电放电警告
    6. 9.6 术语表
  12. 10Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

First-Order RC Filter Considerations

Although the device digital filter attenuates high-frequency noise, use a first-order, low-pass RC filter at the ADC inputs to further reject out-of-bandwidth noise and avoid aliasing. A differential low-pass RC filter formed by R5, R6, and the differential capacitor CDIFF sets the –3-dB cutoff frequency, fC, given by Equation 14. These filter resistors produce a voltage drop because of the input currents flowing into and out of the ADC. This voltage drop can contribute to an additional gain error. Limit the filter resistor values to below 1 kΩ.

Equation 14. fC = 1 / [2π · (R5 + R6) · CDIFF]

Two common-mode filter capacitors (CCM1 and CCM2) are also added to offer attenuation of high-frequency, common-mode noise components. Select a differential capacitor, CDIFF, that is at least an order of magnitude (10x) larger than these common-mode capacitors because mismatches in these common-mode capacitors can convert common-mode noise into differential noise.