ZHCSQZ9A March   2022  – October 2022 ADS117L11

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements (1.65 V ≤ IOVDD ≤ 2 V)
    7. 6.7  Switching Characteristics (1.65 V ≤ IOVDD ≤ 2 V)
    8. 6.8  Timing Requirements (2 V < IOVDD ≤ 5.5 V)
    9. 6.9  Switching Characteristics (2 V < IOVDD ≤ 5.5 V)
    10. 6.10 Timing Diagrams
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1  Offset Error Measurement
    2. 7.2  Offset Drift Measurement
    3. 7.3  Gain Error Measurement
    4. 7.4  Gain Drift Measurement
    5. 7.5  NMRR Measurement
    6. 7.6  CMRR Measurement
    7. 7.7  PSRR Measurement
    8. 7.8  INL Error Measurement
    9. 7.9  THD Measurement
    10. 7.10 SFDR Measurement
    11. 7.11 Noise Performance
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Input (AINP, AINN)
        1. 8.3.1.1 Input Range
      2. 8.3.2 Reference Voltage (REFP, REFN)
        1. 8.3.2.1 Reference Voltage Range
      3. 8.3.3 Clock Operation
        1. 8.3.3.1 Internal Oscillator
        2. 8.3.3.2 External Clock
      4. 8.3.4 Modulator
      5. 8.3.5 Digital Filter
        1. 8.3.5.1 Wideband Filter
        2. 8.3.5.2 Low-Latency Filter (Sinc)
          1. 8.3.5.2.1 Sinc4 Filter
          2. 8.3.5.2.2 Sinc4 + Sinc1 Filter
          3. 8.3.5.2.3 Sinc3 Filter
          4. 8.3.5.2.4 Sinc3 + Sinc1 Filter
      6. 8.3.6 Power Supplies
        1. 8.3.6.1 AVDD1 and AVSS
        2. 8.3.6.2 AVDD2
        3. 8.3.6.3 IOVDD
        4. 8.3.6.4 Power-On Reset (POR)
        5. 8.3.6.5 CAPA and CAPD
      7. 8.3.7 VCM Output Voltage
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Scalable Speed Modes
      2. 8.4.2 Idle Mode
      3. 8.4.3 Standby Mode
      4. 8.4.4 Power-Down Mode
      5. 8.4.5 Reset
        1. 8.4.5.1 RESET Pin
        2. 8.4.5.2 Reset by SPI Register Write
        3. 8.4.5.3 Reset by SPI Input Pattern
      6. 8.4.6 Synchronization
        1. 8.4.6.1 Synchronized Control Mode
        2. 8.4.6.2 Start/Stop Control Mode
        3. 8.4.6.3 One-Shot Control Mode
      7. 8.4.7 Conversion-Start Delay Time
      8. 8.4.8 Calibration
        1. 8.4.8.1 OFFSET2, OFFSET1, OFFSET0 Calibration Registers (Addresses 9h, Ah, Bh)
        2. 8.4.8.2 GAIN2, GAIN1, GAIN0 Calibration Registers (Addresses 0Ch, 0Dh, 0Eh)
        3. 8.4.8.3 Calibration Procedure
    5. 8.5 Programming
      1. 8.5.1 Serial Interface (SPI)
        1. 8.5.1.1 Chip Select (CS)
        2. 8.5.1.2 Serial Clock (SCLK)
        3. 8.5.1.3 Serial Data Input (SDI)
        4. 8.5.1.4 Serial Data Output/Data Ready (SDO/DRDY)
      2. 8.5.2 SPI Frame
      3. 8.5.3 SPI CRC
      4. 8.5.4 Register Map CRC
      5. 8.5.5 Full-Duplex Operation
      6. 8.5.6 Device Commands
        1. 8.5.6.1 No-Operation
        2. 8.5.6.2 Read Register Command
        3. 8.5.6.3 Write Register Command
      7. 8.5.7 Read Conversion Data
        1. 8.5.7.1 Conversion Data
        2. 8.5.7.2 Data Ready
          1. 8.5.7.2.1 DRDY
          2. 8.5.7.2.2 SDO/DRDY
          3. 8.5.7.2.3 DRDY Bit
          4. 8.5.7.2.4 Clock Counting
        3. 8.5.7.3 STATUS Header
      8. 8.5.8 Daisy-Chain Operation
      9. 8.5.9 3-Wire SPI Mode
        1. 8.5.9.1 3-Wire SPI Mode Frame Reset
    6. 8.6 Registers
      1. 8.6.1  DEV_ID Register (Address = 0h) [reset = 01h]
      2. 8.6.2  REV_ID Register (Address = 1h) [reset = xxh]
      3. 8.6.3  STATUS Register (Address = 2h) [reset = x1100xxxb]
      4. 8.6.4  CONTROL Register (Address = 3h) [reset = 00h]
      5. 8.6.5  MUX Register (Address = 4h) [reset = 00h]
      6. 8.6.6  CONFIG1 Register (Address = 5h) [reset = 00h]
      7. 8.6.7  CONFIG2 Register (Address = 6h) [reset = 00h]
      8. 8.6.8  CONFIG3 Register (Address = 7h) [reset = 00h]
      9. 8.6.9  CONFIG4 Register (Address = 8h) [reset = 08h]
      10. 8.6.10 OFFSET2, OFFSET1, OFFSET0 Registers (Addresses = 9h, Ah, Bh) [reset = 00h, 00h, 00h]
      11. 8.6.11 GAIN2, GAIN1, GAIN0 Registers (Addresses = Ch, Dh, Eh) [reset = 40h, 00h, 00h]
      12. 8.6.12 CRC Register (Address = Fh) [reset = 00h]
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Driver
      2. 9.1.2 Antialias Filter
      3. 9.1.3 Reference Voltage
      4. 9.1.4 Simultaneous-Sampling Systems
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 术语表
  11. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Mechanical Data

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RUK|20
散热焊盘机械数据 (封装 | 引脚)
订购信息

Daisy-Chain Operation

In simultaneous-sampling systems using multiple ADCs, the devices can be connected in a daisy-chain string to reduce the number of SPI connections. A daisy-chain connection links together the SPI output of one device to the SPI input of the next device so the devices in the chain appear as a single logical device to the host controller. There is no special programming required for daisy-chain operation, simply apply additional shift clocks to access all devices in the chain. For simplified operation, program the same SPI frame size for each device (for example, when enabling the CRC option of all devices, thus producing a 24-bit frame size).

Figure 8-36 illustrates four devices connected in a daisy-chain configuration. The SDI of ADS117L11 (1) connects to the host SPI data out, and SDO/DRDY of ADS117L11 (4) connects to the host SPI data input. The shift operation is simultaneous for all devices in the chain. After each ADC shifts out the conversion data, the data of SDI appears on SDO/DRDY to drive the SDI of the next device in the chain. The shift operation continues until the last device in the chain is reached. The SPI frame ends when CS is taken high, at which time the data shifted into each device is interpreted. The SDO/DRDY pin must be programmed to data output-only mode.

Figure 8-36 Daisy-Chain Connection

Figure 8-37 shows the initial communication using 16-bit frame size for each device after device power up.

Figure 8-37 16-Bit Data Input Sequence

To input data, the host first shifts in the data intended for the last device in the chain. The number of input bytes for each ADC is sized to match the output frame size. The default frame size is 16 bits (CRC and STATUS byes are default off), so initially each ADC requires two command bytes. The input data of ADC (4) is first, followed by the input data of ADC (3), and so forth.

Figure 8-38 shows the detailed input data sequence for the daisy-chain write register operation of Figure 8-36. 32-bit frames for each ADC are shown (16 bits of data, with the STATUS and CRC bytes enabled). Command operations can be different for each ADC. The read register operation requires a second frame operation to read out the register data.

Optional CRC byte. If CRC is disabled, the individual frames shorten one byte.
Previous state of SDO/DRDY before SCLK is applied.
Optional STATUS header. If STATUS is disabled, the individual frames shorten one byte.
Figure 8-38 Write Register Data in Daisy-Chain Connection

Figure 8-39 illustrates the clock sequence to read conversion data from the device connection in Figure 8-36. This example illustrates a 24-bit output frame (16-bits of data, with the CRC byte enabled). The output data of ADC (4) is first in the sequence, followed by the data of ADC (3), and so on. The total number of clocks required to shift out the data is given by the number of bits per frame × the number of devices in the chain. In this example, 24-bit output frames × four devices result in 96 total clocks.

Optional CRC byte. If CRC is disabled, the individual frames shorten one byte.
Previous state of SDO/DRDY before SCLK is applied.
Figure 8-39 Read Conversion Data in Daisy-Chain Connection

As shown in Equation 17, the maximum number of devices connected in daisy-chain configuration is limited by the SCLK signal frequency, data rate, and number of bits per frame. The same limitation applies to parallel-connected SPI because the data from each ADC is also read sequentially.


Equation 17. Maximum devices in a chain = ⌊fSCLK / (fDATA · bits per frame)⌋

For example, if fSCLK = 20 MHz, fDATA = 100 kSPS, and the maximum length 32-bit frames are used, the maximum number of daisy-chain connected devices is the floor of: ⌊20 MHz / (100 kHz · 32)⌋ = 6.