ZHCSIU4A September   2018  – August 2019 ADS1284

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Noise Performance
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Inputs and Multiplexer
      2. 8.3.2 Programmable Gain Amplifier (PGA)
      3. 8.3.3 Analog-to-Digital Converter (ADC)
        1. 8.3.3.1 Modulator
          1. 8.3.3.1.1 Modulator Overrange
          2. 8.3.3.1.2 Modulator Input Impedance
          3. 8.3.3.1.3 Modulator Overrange Detection (MFLAG)
          4. 8.3.3.1.4 Offset
          5. 8.3.3.1.5 Voltage Reference Inputs (VREFP, VREFN)
        2. 8.3.3.2 Digital Filter
          1. 8.3.3.2.1 Sinc Filter Section (sinx / x)
          2. 8.3.3.2.2 FIR Section
          3. 8.3.3.2.3 Group Delay and Step Response
            1. 8.3.3.2.3.1 Linear Phase Response
            2. 8.3.3.2.3.2 Minimum Phase Response
          4. 8.3.3.2.4 HPF Section
    4. 8.4 Device Functional Modes
      1. 8.4.1  Synchronization (SYNC PIN and SYNC Command)
        1. 8.4.1.1 Pulse-Sync Mode
        2. 8.4.1.2 Continuous-Sync Mode
      2. 8.4.2  Reset (RESET Pin and Reset Command)
      3. 8.4.3  Master Clock Input (CLK)
      4. 8.4.4  Power-Down (PWDN Pin and STANDBY Command)
      5. 8.4.5  Power-On Sequence
      6. 8.4.6  DVDD Power Supply
      7. 8.4.7  Serial Interface
        1. 8.4.7.1 Chip Select (CS)
        2. 8.4.7.2 Serial Clock (SCLK)
        3. 8.4.7.3 Data Input (DIN)
        4. 8.4.7.4 Data Output (DOUT)
        5. 8.4.7.5 Serial Port Auto Timeout
        6. 8.4.7.6 Data Ready (DRDY)
      8. 8.4.8  Data Format
      9. 8.4.9  Reading Data
        1. 8.4.9.1 Read-Data-Continuous Mode
        2. 8.4.9.2 Read-Data-By-Command Mode
      10. 8.4.10 One-Shot Operation
      11. 8.4.11 Offset and Full-Scale Calibration Registers
        1. 8.4.11.1 OFC[2:0] Registers
        2. 8.4.11.2 FSC[2:0] Registers
      12. 8.4.12 Calibration Commands (OFSCAL and GANCAL)
        1. 8.4.12.1 OFSCAL Command
        2. 8.4.12.2 GANCAL Command
      13. 8.4.13 User Calibration
    5. 8.5 Programming
      1. 8.5.1 Commands
        1. 8.5.1.1  SDATAC Requirements
        2. 8.5.1.2  WAKEUP: Wake-Up From Standby Mode
        3. 8.5.1.3  STANDBY: Standby Mode
        4. 8.5.1.4  SYNC: Synchronize the Analog-to-Digital Conversion
        5. 8.5.1.5  RESET: Reset the Device
        6. 8.5.1.6  RDATAC: Read Data Continuous
        7. 8.5.1.7  SDATAC: Stop Read Data Continuous
        8. 8.5.1.8  RDATA: Read Data by Command
        9. 8.5.1.9  RREG: Read Register Data
        10. 8.5.1.10 WREG: Write to Register
        11. 8.5.1.11 OFSCAL: Offset Calibration
        12. 8.5.1.12 GANCAL: Gain Calibration
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1 ID_CFG: ID_Configuration Register (address = 00h) [reset =x0h]
        2. 8.6.1.2 CONFIG0: Configuration Register 0 (address = 01h) [reset = 52h]
        3. 8.6.1.3 CONFIG1: Configuration Register 1 (address = 02h) [reset = 08h]
        4. 8.6.1.4 HPF0 and HPF1 Registers
          1. 8.6.1.4.1 HPF0: High-Pass Filter Corner Frequency, Low Byte (address = 03h) [reset = 32h]
          2. 8.6.1.4.2 HPF1: High-Pass Filter Corner Frequency, High Byte (address = 04h) [reset = 03h]
        5. 8.6.1.5 OFC0, OFC1, OFC2 Registers
          1. 8.6.1.5.1 OFC0: Offset Calibration, Low Byte (address = 05h) [reset = 00h]
          2. 8.6.1.5.2 OFC1: Offset Calibration, Mid Byte (address = 06h) [reset = 00h]
          3. 8.6.1.5.3 OFC2: Offset Calibration, High Byte (address = 07h) [reset = 00h]
        6. 8.6.1.6 FSC0, FSC1, FSC2 Registers
          1. 8.6.1.6.1 FSC0: Full-Scale Calibration, Low Byte (address = 08h) [reset = 00h]
          2. 8.6.1.6.2 FSC1: Full-Scale Calibration, Mid Byte (address = 09h) [reset = 00h]
          3. 8.6.1.6.3 FSC2: Full-Scale Calibration, High Byte (address = 0Ah) [reset = 40h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Geophone Interface
      2. 9.2.2 Digital Interface
    3. 9.3 Initialization Set Up
  10. 10器件和文档支持
    1. 10.1 接收文档更新通知
    2. 10.2 社区资源
    3. 10.3 商标
    4. 10.4 静电放电警告
    5. 10.5 Glossary
  11. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Programmable Gain Amplifier (PGA)

The PGA of the ADS1284 is a low-noise, continuous-time, differential-in and differential-out CMOS amplifier. The gain is set by register bits PGA[2:0], programmable from 1 to 64. The PGA differentially drives the modulator of the ADC through 300-Ω internal resistors. The effect of the internal resistors and the modulator input impedance results in gain error that changes with operating mode (see Electrical Characteristics). A PGA output filter capacitor (10-nF C0G or film dielectric) must be connected to CAPP and CAPN in order to filter modulator sampling glitches. The external capacitor also serves as the antialias filter. The corner frequency of the filter is given in Equation 3:

Equation 3. ADS1284 q_fp_bas418.gif

The PGA incorporates chopper stabilization. As shown in Figure 36, amplifiers A1 and A2 are chopper stabilized to remove the offset, offset drift, and 1/f noise. Chopper stabilization (or chopping) moves the offset and noise to fCLK / 1024 (4 kHz, fCLK = 4.096 MHz ), which is located safely out of the pass-band frequency range. Chopping can be disabled by setting the CHOP bit = 0. When chopping is disabled, the PGA input impedance increases (see Differential Input Impedance parameter in the Electrical Characteristics). As shown in Figure 37, chopper stabilization provides flat noise density, leaving the noise spectrum white. However, if chopper stabilization is disabled, the PGA input noise results in a rising 1/f noise profile. The effect of 1/f noise to the conversion data is most noticeable at high PGA gain setting.

ADS1284 ai_pga_fbd_bas418.gif
Modulator impedance depends on operating mode. High-resolution mode modulator impedance is 55 kΩ. Low-power mode modulator impedance is 110 kΩ.
Figure 36. PGA Block Diagram
ADS1284 ai_pga_noise_bas565.gifFigure 37. PGA Noise (High-resolution Mode)

As a result of charges stored on stray capacitance of the input chopping switches, low-level transient currents flow through the inputs when chopper stabilization is enabled. The average value of the transient currents results in an effective input impedance. The effective input impedance depends on the PGA gain, as shown in Table 6. Despite the relatively high input impedance, evaluate applications that use high-impedance sensors or high-impedance termination resistors. In some cases, ADC performance may be improved by disabling chopper stabilization.Table 6 shows the PGA differential input impedance with chopper stabilization enabled.

Table 6. Differential Input Impedance (CHOP Enabled)

PGA DIFFERENTIAL INPUT IMPEDANCE (GΩ)
1 7
2 7
4 4
8 3
16 2
32 1
64 0.5

The PGA provides programmable gains from 1 to 64. Table 7 shows the register bit setting for the PGA and resulting full-scale differential range.

Table 7. PGA Gain Settings

PGA[2:0] GAIN DIFFERENTIAL INPUT RANGE (V)(1)
000 1 ±2.5
001 2 ±1.25
010 4 ±0.625
011 8 ±0.312
100 16 ±0.156
101 32 ±0.078
110 64 ±0.039
VREF = 5 V. The input range scales with VREF.

The specified range of the PGA output is shown in Equation 4:

Equation 4. ADS1284 q_avss_le_avdd_bas418.gif

For best performance, maintain PGA output levels (signal plus common mode voltage) within these limits.