ZHCSIU4A September   2018  – August 2019 ADS1284

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     Device Images
      1.      简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Noise Performance
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Inputs and Multiplexer
      2. 8.3.2 Programmable Gain Amplifier (PGA)
      3. 8.3.3 Analog-to-Digital Converter (ADC)
        1. 8.3.3.1 Modulator
          1. 8.3.3.1.1 Modulator Overrange
          2. 8.3.3.1.2 Modulator Input Impedance
          3. 8.3.3.1.3 Modulator Overrange Detection (MFLAG)
          4. 8.3.3.1.4 Offset
          5. 8.3.3.1.5 Voltage Reference Inputs (VREFP, VREFN)
        2. 8.3.3.2 Digital Filter
          1. 8.3.3.2.1 Sinc Filter Section (sinx / x)
          2. 8.3.3.2.2 FIR Section
          3. 8.3.3.2.3 Group Delay and Step Response
            1. 8.3.3.2.3.1 Linear Phase Response
            2. 8.3.3.2.3.2 Minimum Phase Response
          4. 8.3.3.2.4 HPF Section
    4. 8.4 Device Functional Modes
      1. 8.4.1  Synchronization (SYNC PIN and SYNC Command)
        1. 8.4.1.1 Pulse-Sync Mode
        2. 8.4.1.2 Continuous-Sync Mode
      2. 8.4.2  Reset (RESET Pin and Reset Command)
      3. 8.4.3  Master Clock Input (CLK)
      4. 8.4.4  Power-Down (PWDN Pin and STANDBY Command)
      5. 8.4.5  Power-On Sequence
      6. 8.4.6  DVDD Power Supply
      7. 8.4.7  Serial Interface
        1. 8.4.7.1 Chip Select (CS)
        2. 8.4.7.2 Serial Clock (SCLK)
        3. 8.4.7.3 Data Input (DIN)
        4. 8.4.7.4 Data Output (DOUT)
        5. 8.4.7.5 Serial Port Auto Timeout
        6. 8.4.7.6 Data Ready (DRDY)
      8. 8.4.8  Data Format
      9. 8.4.9  Reading Data
        1. 8.4.9.1 Read-Data-Continuous Mode
        2. 8.4.9.2 Read-Data-By-Command Mode
      10. 8.4.10 One-Shot Operation
      11. 8.4.11 Offset and Full-Scale Calibration Registers
        1. 8.4.11.1 OFC[2:0] Registers
        2. 8.4.11.2 FSC[2:0] Registers
      12. 8.4.12 Calibration Commands (OFSCAL and GANCAL)
        1. 8.4.12.1 OFSCAL Command
        2. 8.4.12.2 GANCAL Command
      13. 8.4.13 User Calibration
    5. 8.5 Programming
      1. 8.5.1 Commands
        1. 8.5.1.1  SDATAC Requirements
        2. 8.5.1.2  WAKEUP: Wake-Up From Standby Mode
        3. 8.5.1.3  STANDBY: Standby Mode
        4. 8.5.1.4  SYNC: Synchronize the Analog-to-Digital Conversion
        5. 8.5.1.5  RESET: Reset the Device
        6. 8.5.1.6  RDATAC: Read Data Continuous
        7. 8.5.1.7  SDATAC: Stop Read Data Continuous
        8. 8.5.1.8  RDATA: Read Data by Command
        9. 8.5.1.9  RREG: Read Register Data
        10. 8.5.1.10 WREG: Write to Register
        11. 8.5.1.11 OFSCAL: Offset Calibration
        12. 8.5.1.12 GANCAL: Gain Calibration
    6. 8.6 Register Maps
      1. 8.6.1 Register Descriptions
        1. 8.6.1.1 ID_CFG: ID_Configuration Register (address = 00h) [reset =x0h]
        2. 8.6.1.2 CONFIG0: Configuration Register 0 (address = 01h) [reset = 52h]
        3. 8.6.1.3 CONFIG1: Configuration Register 1 (address = 02h) [reset = 08h]
        4. 8.6.1.4 HPF0 and HPF1 Registers
          1. 8.6.1.4.1 HPF0: High-Pass Filter Corner Frequency, Low Byte (address = 03h) [reset = 32h]
          2. 8.6.1.4.2 HPF1: High-Pass Filter Corner Frequency, High Byte (address = 04h) [reset = 03h]
        5. 8.6.1.5 OFC0, OFC1, OFC2 Registers
          1. 8.6.1.5.1 OFC0: Offset Calibration, Low Byte (address = 05h) [reset = 00h]
          2. 8.6.1.5.2 OFC1: Offset Calibration, Mid Byte (address = 06h) [reset = 00h]
          3. 8.6.1.5.3 OFC2: Offset Calibration, High Byte (address = 07h) [reset = 00h]
        6. 8.6.1.6 FSC0, FSC1, FSC2 Registers
          1. 8.6.1.6.1 FSC0: Full-Scale Calibration, Low Byte (address = 08h) [reset = 00h]
          2. 8.6.1.6.2 FSC1: Full-Scale Calibration, Mid Byte (address = 09h) [reset = 00h]
          3. 8.6.1.6.3 FSC2: Full-Scale Calibration, High Byte (address = 0Ah) [reset = 40h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Geophone Interface
      2. 9.2.2 Digital Interface
    3. 9.3 Initialization Set Up
  10. 10器件和文档支持
    1. 10.1 接收文档更新通知
    2. 10.2 社区资源
    3. 10.3 商标
    4. 10.4 静电放电警告
    5. 10.5 Glossary
  11. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Voltage Reference Inputs (VREFP, VREFN)

The voltage reference of the ADS1284 is the differential voltage applied between pins VREFP and VREFN:

Equation 6. VREF = VREFP – VREFN

The reference inputs use a structure similar to that of the analog inputs with the circuitry of the reference inputs shown in Figure 42. The average load presented by the switched-capacitor reference input can be modeled with an effective differential impedance of:

Equation 7. REFF = tSAMPLE / CIN (tSAMPLE = 1 / fMOD).

Note that the effective impedance of the reference inputs loads the external reference.

ADS1284 ai_ref_in_cir_bas565.gif
REFF shown for high-resolution mode operation. REFF for low-power mode operation is 170 kΩ
Figure 42. Simplified Reference Input Circuit

Place a 0.1-µF ceramic capacitor directly between the ADC VREFP and VREFN pins. Multiple ADC applications can share a single voltage reference, but must have individual capacitors placed at each ADC.

The ADS1284 reference inputs are protected by ESD diodes. In order to prevent these diodes from turning on, the voltage on either input must stay within the range shown in Equation 8:

Equation 8. ADS1284 q_avss_vref_bas418.gif

The minimum operational input range for VREFN is AVSS – 0.1 V, and the maximum operational range for VREFP is AVDD + 0.1 V.

To achieve the best ADC performance, use a low-noise 5-V voltage reference. A 4.096-V or 4.5-V reference voltage can be used; however, these lower reference voltages reduce the signal input range and corresponding decrease SNR. Noise and drift on the reference degrade overall system performance. To achieve optimum performance, give attention to the circuitry providing the reference voltage including possible use of noise filtering. See the Application Information section for reference recommendations.