ZHCSMK4A september   2022  – july 2023 ADS131B26-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. 说明(续)
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Timing Diagram
    9. 7.9 Typical Characteristics
  9. Parameter Measurement Information
    1. 8.1 Offset Drift Measurement
    2. 8.2 Gain Drift Measurement
    3. 8.3 Noise Performance
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Naming Conventions
      2. 9.3.2 Precision Voltage References (REFA, REFB)
      3. 9.3.3 Clocking (MCLK, OSCM, OSCD)
      4. 9.3.4 ADC1y
        1. 9.3.4.1 ADC1y Input Multiplexer
        2. 9.3.4.2 ADC1y Programmable Gain Amplifier (PGA)
        3. 9.3.4.3 ADC1y ΔΣ Modulator
        4. 9.3.4.4 ADC1y Digital Filter
        5. 9.3.4.5 ADC1y Offset and Gain Calibration
        6. 9.3.4.6 ADC1y Conversion Data
      5. 9.3.5 ADC2y
        1. 9.3.5.1 ADC2y Input Multiplexer
        2. 9.3.5.2 ADC2y Programmable Gain Amplifier (PGA)
        3. 9.3.5.3 ADC2y ΔΣ Modulator
        4. 9.3.5.4 ADC2y Digital Filter
        5. 9.3.5.5 ADC2y Offset and Gain Calibration
        6. 9.3.5.6 ADC2y Sequencer
        7. 9.3.5.7 VCMy Buffers
        8. 9.3.5.8 ADC2y Measurement Configurations
        9. 9.3.5.9 ADC2y Conversion Data
      6. 9.3.6 ADC3y
      7. 9.3.7 General-Purpose Digital Inputs and Outputs (GPIO0 to GPIO4)
        1. 9.3.7.1 GPIOx PWM Output Configuration
        2. 9.3.7.2 GPIOx PWM Input Readback
      8. 9.3.8 General-Purpose Digital Inputs and Outputs (GPIO0A, GPIO1A, GPIO0B, GPIO1B)
      9. 9.3.9 Monitors and Diagnostics
        1. 9.3.9.1  Supply Monitors
        2. 9.3.9.2  Clock Monitors
        3. 9.3.9.3  Digital Monitors
          1. 9.3.9.3.1 Register Map CRC
          2. 9.3.9.3.2 Memory Map CRC
          3. 9.3.9.3.3 GPIO Readback
        4. 9.3.9.4  Communication Monitors
        5. 9.3.9.5  Fault Flags and Fault Masking
        6. 9.3.9.6  FAULT Pin
        7. 9.3.9.7  Diagnostics and Diagnostic Procedure
        8. 9.3.9.8  Indicators
        9. 9.3.9.9  Conversion and Sequence Counters
        10. 9.3.9.10 Supply Voltage Readback
        11. 9.3.9.11 Temperature Sensors (TSA, TSB)
        12. 9.3.9.12 Test DACs (TDACA, TDACB)
        13. 9.3.9.13 Open-Wire Detection
        14. 9.3.9.14 Missing Host Detection and MHD Pin
        15. 9.3.9.15 Overcurrent Comparators (OCCA, OCCB)
          1. 9.3.9.15.1 OCCA and OCCB Pins
          2. 9.3.9.15.2 Overcurrent Indication Response Time
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-Up and Reset
        1. 9.4.1.1 Power-On Reset (POR)
        2. 9.4.1.2 RESETn Pin
        3. 9.4.1.3 RESET Command
      2. 9.4.2 Operating Modes
        1. 9.4.2.1 Active Mode
        2. 9.4.2.2 Standby Mode
        3. 9.4.2.3 Power-Down Mode
      3. 9.4.3 ADC Conversion Modes
        1. 9.4.3.1 ADC1y and ADC3y Conversion Modes
          1. 9.4.3.1.1 Continuous-Conversion Mode
          2. 9.4.3.1.2 Single-Shot Conversion Mode
          3. 9.4.3.1.3 Global-Chop Mode
            1. 9.4.3.1.3.1 Overcurrent Indication Response Time in Global-Chop Mode
        2. 9.4.3.2 ADC2y Sequencer Operation and Sequence Modes
          1. 9.4.3.2.1 Continuous Sequence Mode
          2. 9.4.3.2.2 Single-Shot Sequence Mode
          3. 9.4.3.2.3 Synchronized Single-Shot Sequence Mode Based on ADC1y Conversion Starts
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Serial Interface Signals
          1. 9.5.1.1.1 Chip Select (CSn)
          2. 9.5.1.1.2 Serial Data Clock (SCLK)
          3. 9.5.1.1.3 Serial Data Input (SDI)
          4. 9.5.1.1.4 Serial Data Output (SDO)
          5. 9.5.1.1.5 Data Ready (DRDYn)
        2. 9.5.1.2 Serial Interface Communication Structure
          1. 9.5.1.2.1 SPI Communication Frames
          2. 9.5.1.2.2 SPI Communication Words
          3. 9.5.1.2.3 STATUS Word
          4. 9.5.1.2.4 Communication Cyclic Redundancy Check (CRC)
          5. 9.5.1.2.5 Commands
            1. 9.5.1.2.5.1 NULL (0000 0000 0000 0000b)
            2. 9.5.1.2.5.2 RESET (0000 0000 0001 0001b)
            3. 9.5.1.2.5.3 LOCK (0000 0101 0101 0101b)
            4. 9.5.1.2.5.4 UNLOCK (0000 0110 0101 0101b)
            5. 9.5.1.2.5.5 WREG (011a aaaa aaa0 0nnnb)
            6. 9.5.1.2.5.6 RREG (101a aaaa aaan nnnnb)
          6. 9.5.1.2.6 SCLK Counter
          7. 9.5.1.2.7 SPI Timeout
          8. 9.5.1.2.8 Reading ADC1A, ADC1B, ADC2A, ADC2B, ADC3A, and ADC3B Conversion Data
          9. 9.5.1.2.9 DRDYn Pin Behavior
    6. 9.6 Register Map
      1. 9.6.1 Registers
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Unused Inputs and Outputs
      2. 10.1.2 Minimum Interface Connections
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Current Shunt Measurement
        2. 10.2.2.2 Battery Pack Voltage Measurement
        3. 10.2.2.3 Other Voltage Measurements
        4. 10.2.2.4 Shunt Temperature Measurement
        5. 10.2.2.5 Analog Output Temperature Sensor Measurement
      3. 10.2.3 Application Curves
    3. 10.3 Power Supply Recommendations
      1. 10.3.1 Power-Supply Options
        1. 10.3.1.1 Single Unregulated External 4-V to 16-V Supply (3.3-V Digital I/O Levels)
        2. 10.3.1.2 Single Regulated External 3.3-V Supply (3.3-V Digital IO Levels)
        3. 10.3.1.3 Single Regulated External 5-V Supply (5-V Digital I/O Levels)
      2. 10.3.2 Power-Supply Sequencing
      3. 10.3.3 Power-Supply Decoupling
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 静电放电警告
    6. 11.6 术语表
  13. 12Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • PHP|48
散热焊盘机械数据 (封装 | 引脚)
订购信息

GPIOx PWM Output Configuration

When GPIOx is configured for PWM format using the GPIOx_FMT bit, the PWM period and duty cycle can be independently configured for a logic high and low level with fine granularity. The GPIOx_LL_PWM_LC[6:0] (GPIOx logic low level PWM low counter value) and GPIOx_LL_PWM_HC[6:0] (GPIOx logic low level PWM high counter value) bits together with the GPIOx_PWM_TB[1:0] (GPIOx PWM time base) bits determine the PWM period and duty cycle when a logic low level is driven as per the GPOx_DAT bit. Similarly, the GPIOx_LH_PWM_LC[6:0] (GPIOx logic high level PWM low counter value) and GPIOx_LH_PWM_HC[6:0] (GPIOx logic high level PWM high counter value) bits together with the GPIOx_PWM_TB[1:0] bits determine the PWM period and duty cycle when a logic high level is driven as per the GPOx_DAT bit.

The following equations specify the PWM period and duty cycle:

Equation 14. PWM period = (PWM high counter value + PWM low counter value) × PWM time base
Equation 15. PWM low time = (PWM low counter value × PWM time base)
Equation 16. PWM high time = (PWM high counter value × PWM time base)
Equation 17. PWM duty cycle = PWM high time / (PWM high time + PWM low time)

Figure 9-13 depicts a visual representation of how the various configuration values produce a certain PWM output. The PWM period always starts with the PWM low time. Changes to the PWM period and duty cycle based on the GPOx_DAT bit only take effect at the start of a new PWM period.

Table 9-14 provides example configuration values for GPIO1 where the logic high level is configured for 75% duty cycle using a 1-ms period and the logic low level for a 25% duty cycle using the same 1-ms period. The PWM time base is chosen as 8.192 MHz / 1024 = 125 μs, assuming an fMCLK = 8.192 MHz is used. The sum of the high and low counter must be eight in this case to yield a PWM period of 8 × 125 μs = 1 ms. Changing the GPIO1_LL_PWM_LC[6:0] = 3Ch = 60 and the GPIO1_LL_PWM_HC[6:0] = 14h = 20 (for example) results in the same 25% duty cycle, but at a PWM period of 80 × 125 μs = 10 ms.

GUID-20220826-SS0I-RF5C-6B22-9HJGFTHDGVH8-low.svg Figure 9-13 GPIOx PWM Output Timing Diagram
Table 9-14 GPIO1 PWM Configuration Example
BIT FIELD BIT FIELD SETTING VALUE CORRESPONDING TIME
(BASED ON fMCLK = 8.192 MHz)
GPIO1_PWM_TB[1:0] 3h 1024 × tMCLK 125 μs
GPIO1_LL_PWM_LC[6:0] 06h 6 750 μs
GPIO1_LL_PWM_HC[6:0] 02h 2 250 μs
GPIO1_LH_PWM_LC[6:0] 02h 2 250 μs
GPIO1_LH_PWM_HC[6:0] 06h 6 750 μs