ZHCS921A May   2012  – January 2016 ADS4128

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Electrical Characteristics: General
    7. 7.7  Digital Characteristics
    8. 7.8  Timing Requirements: LVDS and CMOS Modes
    9. 7.9  Reset Timing Requirements
    10. 7.10 Typical Characteristics
    11. 7.11 Typical Characteristics: Contour
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Migrating From the ADS6149 Family
      2. 8.3.2 Digital Functions and Low-Latency Mode
      3. 8.3.3 Gain for SFDR and SNR Trade-Off
      4. 8.3.4 Offset Correction
      5. 8.3.5 Power Down
        1. 8.3.5.1 Global Power-Down
        2. 8.3.5.2 Standby
        3. 8.3.5.3 Output Buffer Disable
        4. 8.3.5.4 Input Clock Stop
      6. 8.3.6 Power-Supply Sequence
      7. 8.3.7 Output Data Format
    4. 8.4 Device Functional Modes
      1. 8.4.1 Output Interface Modes
        1. 8.4.1.1 Output Interface
        2. 8.4.1.2 DDR LVDS Outputs
        3. 8.4.1.3 LVDS Output Data and Clock Buffers
        4. 8.4.1.4 Parallel CMOS Interface
        5. 8.4.1.5 CMOS Interface Power Dissipation
        6. 8.4.1.6 Input Over-Voltage Indication (OVR Pin)
    5. 8.5 Programming
      1. 8.5.1 Serial Register Readout
      2. 8.5.2 Serial Interface
        1. 8.5.2.1 Register Initialization
    6. 8.6 Register Maps
      1. 8.6.1 Serial Interface Register Map
      2. 8.6.2 Register Description
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Analog Input
      2. 9.1.2 Driving Circuit
        1. 9.1.2.1 Drive Circuit Requirements
      3. 9.1.3 Analog Input
        1. 9.1.3.1 Input Common-Mode
      4. 9.1.4 Clock Input
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Analog Input
        2. 9.2.2.2 Clock Driver
        3. 9.2.2.3 Digital Interface
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Sharing DRVDD and AVDD Supplies
    2. 10.2 Using DC/DC Power Supplies
    3. 10.3 Power Supply Bypassing
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Grounding
      2. 11.1.2 Supply Decoupling
      3. 11.1.3 Exposed Pad
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 器件命名规则
    2. 12.2 文档支持
      1. 12.2.1 相关文档 
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 Glossary
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD –0.3 2.1 V
DRVDD –0.3 2.1
Voltage Between AGND and DRGND –0.3 0.3 V
Between AVDD to DRVDD (when AVDD leads DRVDD) 0 2.1
Between DRVDD to AVDD (when DRVDD leads AVDD) 0 2.1
Voltage applied to input pins INP, INM –0.3 (1.9) AVDD + 0.3 V
CLKP, CLKM(2), DFS, OE –0.3 AVDD + 0.3
RESET, SCLK, SDATA, SEN –0.3 3.9
Temperature Operating free-air, TA –40 85 °C
Operating junction, TJ 125
Storage, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When AVDD is turned off, it is recommended to switch off the input clock (or ensure the voltage on CLKP and CLKM is less than |0.3 V|. This setting prevents the ESD protection diodes at the clock input pins from turning on.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise noted.
MIN TYP MAX UNIT
SUPPLIES
AVDD Analog supply voltage 1.7 1.8 1.9 V
DRVDD Digital supply voltage 1.7 1.8 1.9
ANALOG INPUTS
Differential input voltage range(1) 2 VPP
Input common-mode voltage VCM ± 0.05 V
Maximum analog input frequency With 2-VPP input amplitude(2) 400 MHz
With 1-VPP input amplitude(2) 800
CLOCK INPUT
Input clock sample rate, low-speed mode Enabled(3) 20 80 MSPS
Disabled(3) > 80 200
Input clock amplitude differential (VCLKP – VCLKM) Sine wave, ac-coupled 0.2 1.5 VPP
LVPECL, ac-coupled 1.6
LVDS, ac-coupled 0.7
LVCMOS, single-ended, ac-coupled 1.8 V
Input clock duty cycle Low-speed mode enabled 40% 50% 60%
Low-speed mode disabled 35% 50% 65%
DIGITAL OUTPUTS
CLOAD Maximum external load capacitance from each output pin to DRGND 5 pF
RLOAD Differential load resistance between the LVDS output pairs (LVDS mode) 100 Ω
TA Operating free-air temperature –40 85 °C
(1) With 0-dB gain. See the Fine Gain section in the Detailed Description for relation between input voltage range and gain.
(2) See the Overview section in the Detailed Description.
(3) It is recommended to use these modes to get best performance. These modes can be set using the serial interface only.

7.4 Thermal Information

THERMAL METRIC(1) ADS4128 UNIT
RGZ (VQFN)
48 PINS
RθJA Junction-to-ambient thermal resistance 27.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 15.1 °C/W
RθJB Junction-to-board thermal resistance 5.4 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 5.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.7 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Typical values are at 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input, 1-dB gain, and DDR LVDS interface, unless otherwise noted.
Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, and DRVDD = 1.8 V. Note that after reset, the device is in 0-dB gain mode.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 12 Bits
SNR Signal-to-noise ratio, LVDS fIN = 10 MHz 70 dBFS
fIN = 70 MHz 70
fIN = 100 MHz 69.7
fIN = 170 MHz 65.8 69
fIN = 300 MHz 68.2
SINAD Signal-to-noise and distortion ratio, LVDS fIN = 10 MHz 69.8 dBFS
fIN = 70 MHz 69.2
fIN = 100 MHz 69.1
fIN = 170 MHz 65.5 68.8
fIN = 300 MHz 67
SFDR Spurious-free dynamic range fIN = 10 MHz 87 dBc
fIN = 70 MHz 80
fIN = 100 MHz 82
fIN = 170 MHz 70 85
fIN = 300 MHz 74
THD Total harmonic distortion fIN = 10 MHz 84 dBc
fIN = 70 MHz 78
fIN = 100 MHz 79
fIN = 170 MHz 69 83
fIN = 300 MHz 73
HD2 Second-harmonic distortion fIN = 10 MHz 90 dBc
fIN = 70 MHz 84
fIN = 100 MHz 83
fIN = 170 MHz 70 85
fIN = 300 MHz 74
HD3 Third-harmonic distortion fIN = 10 MHz 87 dBc
fIN = 70 MHz 80
fIN = 100 MHz 82
fIN = 170 MHz 70 86
fIN = 300 MHz 79
Worst spur
(other than second and third harmonics)
fIN = 10 MHz 93 dBc
fIN = 70 MHz 93
fIN = 100 MHz 91
fIN = 170 MHz 75 90
fIN = 300 MHz 88
IMD Two-tone intermodulation distortion f1 = 46 MHz, f2 = 50 MHz,
each tone at –7 dBFS
–85 dBFS
f1 = 185 MHz, f2 = 190 MHz,
each tone at –7 dBFS
–90
Input overload recovery Recovery to within 1% (of final value) for 6-dB overload with sine-wave input 1 Clock cycles
PSRR AC power-supply rejection ratio For 50-mVPP signal on AVDD supply,
up to 10 MHz
> 30 dB
ENOB Effective number of bits fIN = 170 MHz 11.2 LSBs
DNL Differential nonlinearity fIN = 170 MHz –0.95 ±0.2 1.6 LSBs
INL Integrated nonlinearity fIN = 170 MHz ±0.5 ±5 LSBs

7.6 Electrical Characteristics: General

Typical values are at 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, 50% clock duty cycle, and 0-dB gain, unless otherwise noted.
Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, and DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUTS
Differential input voltage range 2 VPP
Differential input resistance (at dc); see Figure 47 > 1
Differential input capacitance; see Figure 48 4 pF
Analog input bandwidth 550 MHz
Analog input common-mode current (per input pin) 0.6 µA/MSPS
VCM Common-mode output voltage 0.95 V
VCM output current capability 4 mA
DC ACCURACY
Offset error –15 2.5 15 mV
Temperature coefficient of offset error 0.003 mV/°C
EGREF Gain error as a result of internal reference inaccuracy alone –2 2 %FS
EGCHAN Gain error of channel alone –0.2 ±1 %FS
Temperature coefficient of EGCHAN 0.001 Δ%/°C
POWER SUPPLY
IAVDD Analog supply current 85 113 mA
IDRVDD(2) Output buffer supply current, LVDS interface with 100-Ω external termination Low LVDS swing (200 mV) 43 mA
Standard LVDS swing (350 mV) 55 72
Output buffer supply current(2)(1)
CMOS interface
8-pF external load capacitance
fIN = 2.5 MHz
33
Analog power 153 mW
Digital power, LVDS interface Low LVDS swing (200 mV) 77 mW
Digital power, CMOS interface(1) 8-pF external load capacitance
fIN = 2.5 MHz
59 mW
Global power-down 10 25 mW
Standby 185 mW
(1) In CMOS mode, the DRVDD current scales with the sampling frequency, the load capacitance on the output pins, input frequency, and the supply voltage (see the CMOS Interface Power Dissipation section in the Device Functional Modes).
(2) The maximum DRVDD current with CMOS interface depends on the actual load capacitance on the digital output lines. Note that the maximum recommended load capacitance on each digital output line is 10 pF.

7.7 Digital Characteristics

Typical values are at 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, and 50% clock duty cycle, unless otherwise noted.
Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, and DRVDD = 1.8 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUTS (RESET, SCLK, SDATA, SEN, OE)
VIH High-level input voltage RESET, SCLK, SDATA, and SEN support 1.8-V and 3.3-V CMOS logic levels 1.3 V
OE only supports 1.8-V CMOS logic levels 1.3
VIL Low-level input voltage RESET, SCLK, SDATA, and SEN support 1.8-V and 3.3-V CMOS logic levels 0.4 V
OE only supports 1.8-V CMOS logic levels 0.4
IIH High-level input current, SDATA and SCLK(1) VHIGH = 1.8 V 10 µA
High-level input current, SEN VHIGH = 1.8 V 0
IIL Low-level input, SDATA and SCLK VLOW = 0 V 0 µA
Low-level input, SEN VLOW = 0 V 10
DIGITAL OUTPUTS (CMOS INTERFACE: D0 to D11, OVR_SDOUT)
VOH High-level output voltage DRVDD – 0.1 DRVDD V
VOL Low-level output voltage 0 0.1 V
DIGITAL OUTPUTS (LVDS INTERFACE: DA0P and DA0M to DA11P and DA11M, DB0P and DB0M to DB11P and DB11M, CLKOUTP and CLKOUTM)
VODH High-level output voltage(2) Standard-swing LVDS 270 350 430 mV
Low-swing LVDS 200
VODL Low-level output voltage(2) Standard-swing LVDS –430 –350 –270 mV
Low-swing LVDS –200
VOCM Output common-mode voltage 0.85 1.05 1.25 V
(1) SDATA and SCLK have an internal 180-kΩ pull-down resistor.
(2) With an external 100-Ω termination.

7.8 Timing Requirements: LVDS and CMOS Modes(1)

Typical values are at 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, sampling frequency = 200 MSPS, sine wave input clock,
CLOAD = 5 pF(2), and RLOAD = 100 Ω(3), unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C, AVDD = 1.8 V, and DRVDD = 1.7 V to 1.9 V.
MIN NOM MAX UNIT
tA Aperture delay 0.6 0.8 1.2 ns
Aperture delay variation Between two devices at the same temperature and DRVDD supply ±100 ps
tJ Aperture jitter 100 fS rms
Wakeup time Time to valid data after coming out of STANDBY mode 5 25 µs
Time to valid data after coming out of PDN GLOBAL mode 100 500
ADC latency(8) Low-latency mode (default after reset) 10 Clock cycles
Low-latency mode disabled
(gain enabled, offset correction disabled)
16
Low-latency mode disabled
(gain and offset correction enabled)
17
DDR LVDS MODE(4)(5)
tSU Data setup time(3) Data valid(6) to zero-crossing of CLKOUTP 1.05 1.55 ns
tH Data hold time(3) Zero-crossing of CLKOUTP to data becoming invalid(6) 0.35 0.6 ns
tPDI Clock propagation delay Input clock rising edge crossover to output clock rising edge crossover
1 MSPS ≤ sampling frequency ≤ 200 MSPS
3 4.2 5.4 ns
Variation of tPDI Between two devices at the same temperature and DRVDD supply ±0.6 ns
LVDS bit clock duty cycle Duty cycle of differential clock,
(CLKOUTP – CLKOUTM)
1 MSPS ≤ sampling frequency ≤ 200 MSPS
42% 48% 54%
tRISE, tFALL Data rising time,
Data falling time
Rising time measured from –100 mV to 100 mV
Falling time measured from 100 mV to –100 mV
1 MSPS ≤ sampling frequency ≤ 200 MSPS
0.14 ns
tCLKRISE,
tCLKFALL
Output clock rising time,
Output clock falling time
Rising time measured from –100 mV to 100 mV
Falling time measured from 100 mV to –100 mV
1 MSPS ≤ sampling frequency ≤ 200 MSPS
0.14 ns
tOE Output enable (OE) to data delay Time to valid data after OE becomes active 50 100 ns
PARALLEL CMOS MODE(7)
tSTART Input clock to data delay Input clock rising edge crossover to start of data valid(6) –0.3 ns
tDV Data valid time Time interval of valid data(6) 3.5 4.2 ns
tPDI Clock propagation delay Input clock rising edge crossover to output clock rising edge crossover
1 MSPS ≤ sampling frequency ≤ 200 MSPS
4 5.5 7 ns
Output clock duty cycle Duty cycle of output clock, CLKOUT
1 MSPS ≤ sampling frequency ≤ 200 MSPS
47%
tRISE, tFALL Data rising time,
Data falling time
Rising time measured from 20% to 80% of DRVDD
Falling time measured from 80% to 20% of DRVDD
1 ≤ sampling frequency ≤ 200 MSPS
0.35 ns
tCLKRISE,
tCLKFALL
Output clock rising time,
Output clock falling time
Rising time measured from 20% to 80% of DRVDD
Falling time measured from 80% to 20% of DRVDD
1 ≤ sampling frequency ≤ 200 MSPS
0.35 ns
tOE Output enable (OE) to data delay Time to valid data after OE becomes active 20 40 ns
(1) Timing parameters are ensured by design and characterization but are not production tested.
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.
(3) RLOAD is the differential load resistance between the LVDS output pair.
(4) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and the load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(5) The LVDS timings are unchanged for low latency disabled and enabled.
(6) Data valid refers to a logic high of 1.26 V and a logic low of 0.54 V.
(7) Low-latency mode enabled.
(8) At higher frequencies, tPDI is greater than one clock period and overall latency = ADC latency + 1.

7.9 Reset Timing Requirements

Typical values are at 25°C and minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C, unless otherwise noted.
MIN TYP MAX UNIT
t1 Power-on delay Delay from power-up of AVDD and DRVDD to RESET pulse active 1 ms
t2 Reset pulse width Pulse width of active RESET signal that resets the serial registers 10 ns
1(1) µs
t3 Delay from RESET disable to SEN active 100 ns
(1) The reset pulse is needed only when using the serial interface configuration. If the pulse width is greater than 1 µs, the device can enter the parallel configuration mode briefly and then return back to serial interface mode.

Table 1. LVDS Timing Across Sampling Frequencies

SAMPLING FREQUENCY (MSPS) SETUP TIME (ns) HOLD TIME (ns)
MIN TYP MAX MIN TYP MAX
200 1.05 1.55 0.35 0.6
185 1.1 1.7 0.35 0.6
160 1.6 2.1 0.35 0.6
125 2.3 3 0.35 0.6
80 4.5 5.2 0.35 0.6

Table 2. CMOS Timing Across Sampling Frequencies (Low Latency Enabled)

SAMPLING FREQUENCY (MSPS) TIMING SPECIFIED WITH RESPECT TO OUTPUT CLOCK
tSETUP (ns) tHOLD (ns) tPDI (ns)
MIN TYP MAX MIN TYP MAX MIN TYP MAX
200 1.6 2.2 1.8 2.5 4 5.5 7
185 1.8 2.4 1.9 2.7 4 5.5 7
160 2.3 2.9 2.2 3 4 5.5 7
125 3.1 3.7 3.2 4 4 5.5 7
80 5.4 6 5.4 6 4 5.5 7

Table 3. CMOS Timing Across Sampling Frequencies (Low Latency Disabled)

SAMPLING FREQUENCY (MSPS) TIMING SPECIFIED WITH RESPECT TO OUTPUT CLOCK
tSETUP (ns) tHOLD (ns) tPDI (ns)
MIN TYP MAX MIN TYP MAX MIN TYP MAX
200 1 1.6 2 2.8 4 5.5 7
185 1.3 2 2.2 3 4 5.5 7
160 1.8 2.5 2.5 3.3 4 5.5 7
125 2.5 3.2 3.5 4.3 4 5.5 7
80 4.8 5.5 5.7 6.5 4 5.5 7

Table 4. CMOS Timing Across Sampling Frequencies (Low Latency Enabled)

SAMPLING FREQUENCY (MSPS) TIMING SPECIFIED WITH RESPECT TO INPUT CLOCK
tSTART (ns) tDV (ns)
MIN TYP MAX MIN TYP MAX
200 –0.3 3.5 4.2
185 –1 3.9 4.5
170 –1.5 4.3 5

Table 5. CMOS Timing Across Sampling Frequencies (Low Latency Disabled)

SAMPLING FREQUENCY (MSPS) TIMING SPECIFIED WITH RESPECT TO INPUT CLOCK
tSTART (ns) tDV (ns)
MIN TYP MAX MIN TYP MAX
200 0.3 3.5 4.2
185 0 3.9 4.5
170 –1.3 4.3 5
ADS4128 tim_latency_mode_bas483.gif
ADC latency in low-latency mode. At higher sampling frequencies, tDPI is greater than one clock cycle which then makes the overall latency = ADC latency + 1.
E = Even bits (D0, D2, D4, and so on). O = Odd bits (D1, D3, D5, and so on).
Figure 1. Latency Diagram
ADS4128 tim_lvds_mode_bas483.gif
Dn = bits D0, D2, D4, and so on. Dn + 1 = bits D1, D3, D5, and so on.
Figure 2. LVDS Mode Timing
ADS4128 tim_latency_bas483.gif
Dn = bits D0, D1, D2, and so forth.
Figure 3. CMOS Mode Timing
ADS4128 tim_lvds_vo_level_bas483.gif
With external 100-Ω termination.
Figure 4. LVDS Output Voltage Levels
ADS4128 tim_serial_readout_bas483.gif
The OVR_SDOUT pin functions as OVR (READOUT = 0).
The OVR_SDOUT pin functions as a serial readout (READOUT = 1).
Figure 5. Serial Readout Timing Diagram
ADS4128 tim_reset_bas483.gif
A high pulse on the RESET pin is required in the serial interface mode in case of initialization through hardware reset. For parallel interface operation, RESET must be permanently tied high.
Figure 6. Reset Timing Diagram
ADS4128 tim_serial_iface_bas483.gif Figure 7. Serial Interface Timing

7.10 Typical Characteristics

At 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, maximum rated sampling frequency, sine wave input clock, 1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 0-dB gain, low-latency mode, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.
ADS4128 G001_BAS578.png Figure 8. FFT for 10-MHz Input Signal
ADS4128 G003_BAS578.png Figure 10. FFT for 300-MHz Input Signal
ADS4128 G005_BAS578.png Figure 12. FFT for Two-Tone Input Signal
ADS4128 G007_BAS578.png Figure 14. SNR vs Input Frequency
ADS4128 G009_BAS578.png Figure 16. SINAD vs Digital Gain
ADS4128 G011_BAS578.png Figure 18. Performance Across Input Amplitude
ADS4128 G013_BAS578.png Figure 20. SFDR vs AVDD Supply and Temperature
ADS4128 G015_BAS578.png Figure 22. Performance vs DRVDD Supply
ADS4128 G017_BAS578.png Figure 24. Performance vs Clock Amplitude
ADS4128 G019_BAS578.png Figure 26. CMRR vs Frequency
ADS4128 G021_BAS578.png Figure 28. PSRR vs Frequency
ADS4128 G023_BAS578.png Figure 30. Power vs Sampling Frequency
ADS4128 G002_BAS578.png Figure 9. FFT for 170-MHz Input Signal
ADS4128 G004_BAS578.png Figure 11. FFT for Two-Tone Input Signal
ADS4128 G006_BAS578.png Figure 13. SFDR vs Input Frequency
ADS4128 G008_BAS578.png Figure 15. SFDR vs Digital Gain
ADS4128 G010_BAS578.png Figure 17. Performance Across Input Amplitude
ADS4128 G012_BAS578.png Figure 19. Performance vs Input Common-Mode Voltage
ADS4128 G014_BAS578.png Figure 21. SNR vs AVDD Supply and Temperature
ADS4128 G016_BAS578.png Figure 23. Performance vs Clock Amplitude
ADS4128 G018_BAS578.png Figure 25. Performance vs Clock Duty Cycle
ADS4128 G020_BAS578.gif Figure 27. CMRR Spectrum
ADS4128 G022_BAS578.gif Figure 29. Zoomed View of Spectrum With PSRR Signal
ADS4128 G024_BAS578.png Figure 31. DRVDD Current vs Sampling Frequency

7.11 Typical Characteristics: Contour

At 25°C, AVDD = 1.8 V, DRVDD = 1.8 V, maximum rated sampling frequency, sine wave input clock, 1.5-VPP differential clock amplitude, 50% clock duty cycle, –1-dBFS differential analog input, 0-dB gain, low-latency mode, DDR LVDS output interface, and 32k-point FFT, unless otherwise noted.
ADS4128 G025_BAS578.gif Figure 32. Signal-to-Noise Ratio (0-dB Gain)
ADS4128 G027_BAS578.gif Figure 34. Spurious-Free Dynamic Range (0-dB Gain)
ADS4128 G026_BAS578.gif Figure 33. Signal-to-Noise Ratio (6-dB Gain)
ADS4128 G028_BAS578.gif Figure 35. Spurious-Free Dynamic Range (6-dB Gain)