ZHCS190D May   2011  – November 2015 ADS5263

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 说明 (续)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics, Dynamic Performance - 16-Bit ADC
    6. 7.6  Electrical Characteristics, General - 16-Bit ADC Mode
    7. 7.7  Electrical Characteristics, Dynamic Performance - 14-Bit ADC
    8. 7.8  Digital Characteristics
    9. 7.9  Timing Requirements
    10. 7.10 LVDS Timing at Lower Sampling Frequencies - 2 Wire, 8× Serialization
    11. 7.11 LVDS Timing for 1 Wire 16× Serialization
    12. 7.12 LVDS Timing for 2 Wire, 7× Serialization
    13. 7.13 LVDS Timing for 1 Wire, 14× Serialization
    14. 7.14 Serial Interface Timing Requirements
    15. 7.15 Reset Switching Characteristics
    16. 7.16 Typical Characteristics
      1. 7.16.1 Typical Characteristic - 16-Bit ADC Mode
      2. 7.16.2 Typical Characteristic - 14-Bit ADC Mode
      3. 7.16.3 Typical Characteristics - Common Plots
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Processing Blocks
      2. 8.3.2 Digital Gain
      3. 8.3.3 Digital Filter
      4. 8.3.4 Custom Filter Coefficients
        1. 8.3.4.1 Custom Filter Without Decimation
      5. 8.3.5 Digital Averaging
      6. 8.3.6 Performance with Digital Processing Blocks
        1. 8.3.6.1 18-Bit Data Output with Digital Processing
      7. 8.3.7 Flexible Mapping o Channel Data to LVDS Outputs
      8. 8.3.8 Output LVDS Interface
      9. 8.3.9 Programmable LCLK Phase
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Configuration
      2. 8.4.2 Serial Register Readout
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
      2. 8.5.2 Register Initialization
    6. 8.6 Register Maps
      1. 8.6.1 Default State After Reset
      2. 8.6.2 Description of Serial Registers
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Analog Input
        1. 9.1.1.1 Drive Circuit Requirements
      2. 9.1.2 Large and Small Signal Input Bandwidth
      3. 9.1.3 Clamp Function For CCD Signals
        1. 9.1.3.1 Differential Input Drive
        2. 9.1.3.2 Clamp Operation
        3. 9.1.3.3 Synchronization to External CCD Timing
      4. 9.1.4 Low-Frequency Noise Suppression
      5. 9.1.5 External Reference Mode
    2. 9.2 Typical Applications
      1. 9.2.1 Driving Circuit Design: Low Input Frequencies (< 50 MHz)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Driving Circuit Design: Input Frequencies > 50 MHz
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 技术规范定义
    2. 12.2 社区资源
    3. 12.3 商标
    4. 12.4 静电放电警告
    5. 12.5 Glossary
  13. 13机械、封装和可订购信息
    1. 13.1 封装
      1. 13.1.1 外露焊盘
      2. 13.1.2 非磁性封装

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, AVDD –0.3 3.9 V
Supply voltage, LVDD –0.3 2.2 V
Voltage between AGND and DRGND –0.3 0.3 V
Voltage applied to analog input pins – INP_A, INM_A, INP_B, INM_B –0.3 minimum (3.6, AVDD + 0.3 V) V
Voltage applied to input pins – CLKP, CLKM, RESET, SCLK, SDATA, CSZ –0.3 AVDD + 0.3 V
Voltage applied to reference input pins –0.3 2.8 V
Operating free-air temperature, TA –40 85 °C
Operating junction temperature, TJ 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
SUPPLIES
AVDD Analog supply voltage 3 3.3 3.6 V
LVDD Digital supply voltage 1.7 1.8 1.9 V
ANALOG INPUTS
Differential input voltage 16-bit ADC mode 4 VPP
14-bit ADC mode 2 VPP
Input common-mode voltage 1.5 ±0.1 V
Maximum analog input frequency 4-Vpp input amplitude, 16-bit ADC mode 70 MHz
2-Vpp input amplitude, 16-bit ADC mode 140
CLOCK INPUT
Input clock sample rate 10 100 MSPS
Input clock amplitude differential
(VCLKP-VCLKM)
Sine wave, ac-coupled 0.2 1.5 VPP
LVPECL, ac-coupled 0.2 1.6 VPP
LVDS, ac-coupled 0.2 0.7 VPP
LVCMOS, single-ended, ac-coupled 3.3 V
Input clock duty cycle 35% 50% 65%
DIGITAL OUTPUTS
CLOAD Maximum external load capacitance from each output pin to DRGND 5 pF
RLOAD Differential load resistance between the LVDS output pairs (LVDS mode) 100 Ω
Operating free-air temperature, TA –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) ADS5263 UNIT
RGC (VQFN)
64 PINS
RθJA Junction-to-ambient thermal resistance 20.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 6.1 °C/W
RθJB Junction-to-board thermal resistance 2.7 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 2.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics, Dynamic Performance – 16-Bit ADC

Typical values are at 25°C, AVDD = 3.3V, LVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input (unless otherwise noted); MIN and MAX values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, LVDD = 1.8 V
PARAMETERS TEST CONDITIONS 100 MSPS 80 MSPS UNIT
MIN TYP MAX MIN TYP MAX
SNR
Idle channel noise
With inputs tied to common-mode VCM 87.5 87.5 dBFS
LSB
Idle channel noise
With inputs tied to common-mode VCM 0.98 0.98 rms
SNR
Signal-to-noise ratio
fin = 5 MHz at 25°C 81 84.5 85.5 dBFS
fin = 5 MHz across temperature 80
fin = 10 MHz 84.6 85.3
fin = 30 MHz 82.7 83.1
fin = 65 MHz 78.9 79.4
SINAD
Signal-to-noise and distortion ratio
fin = 5 MHz 76.6 78.2 78.8 dBFS
fin = 10 MHz 77.5 79
finn = 30 MHz 74.8 76
fin = 65 MHz 71.6 72.5
ENOB
Effective number of bits
fin = 5 MHz 12.7 12.8 LSB
DNL
Differential non-linearity
fin = 5 MHz ±0.1 ±0.1 LSB
INL
Integrated non-linearity
fin = 5 MHz Changed the INL values 100 MSPS From: TYP = ±2.2 To: ±5, Added MAX = ±12 ±5 ±12 ±5 LSB
SFDR
Spurious-free dynamic range
fin = 5 MHz 73.5 80 80 dBc
fin = 10 MHz 80 81
fin = 30 MHz 76 77
fin = 65 MHz 74 75
THD
Total harominc distortion
fin = 5 MHz 72.5 78 78.8 dBc
fin = 10 MHz 77.4 79.2
fin = 30 MHz 74.5 76
fin = 65 MHz 71.4 72.4
HD2
Second harmonic Distortion
fin = 5 MHz 73.5 83.5 85 dBc
fin = 10 MHz 81 84
fin = 30 MHz 80 83
fin = 65 MHz 75 76
HD3
Third harmonic distortion
fin = 5 MHz 73.5 80 80 dBc
fin = 10 MHz 80 81
fin = 30 MHz 75 77
fin = 65 MHz 74 75
Worst Spur
Excluding HD2, HD3
fin = 5 MHz 80 90 dBc
fin = 10 MHz 85 90
finn = 30 MHz 85 88
fin = 65 MHz 82 86
IMD
2-tone intermodulation distortion
f1 = 8 MHz, f2 = 10 MHZ, each tone at –7 dBFS 92 92 dBFS
Input overload recovery Recovery to within 1% (of final value) for 6-dB overload with sine wave input 1 1 clock cyles
PSRR
AC power supply rejection ratio
For 50 mV signal on AVDD supply, up to 1 MHz ripple frequency 30 30 dB

7.6 Electrical Characteristics, General – 16-Bit ADC Mode

Typical values are at 25°C, AVDD = 3.3V, LVDD = 1.8V, 50% clock duty cycle, –1dBFS differential analog input (unless otherwise noted); MIN and MAX values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3V, LVDD = 1.8V
PARAMETERS 100 MSPS 80 MSPS UNIT
MIN TYP MAX MIN TYP MAX
ANALOG INPUT
Differential input voltage range (0-dB gain) 4 4 Vpp
Differential input resistance (at dc) 2.5 2.5
Differential input capacitance 12 12 pF
Analog input bandwidth 700 700 MHz
Analog input common-mode current (per input pin) 8 8 µA/MSPS
VCM common-mode output voltage, Internal reference mode 1.5 1.5 V
VCM output current capability, Internal reference mode 3 3 mA
VCM input voltage, external reference mode 1.45 1.5 1.55 1.45 1.5 1.55 V
VCM input current, external reference mode 0.5 0.5 mA
DC ACCURACY
Offset error ±10 ±30 ±10 mV
EGREF Gain error due to internal reference inaccuracy alone ±1 ±0.5 1 ±0.5 % FS
EGREF
Temperature Coefficient
Internal reference mode 0.002 0.002 Δ%/°C
External l reference mode 0.001 0.001 Δ%/°C
EGCHAN Gain error of channel alone 1 1 % FS
EGCHAN
Temperature Coefficient
0.002 0.002 Δ%/°C
Gain matching 0.5% 0.5%
POWER SUPPLY
IAVDD Analog supply current 370 390 290 mA
ILVDD Digital and output buffer supply current with 100-Ω external LVDS termination 110 150 100 mA
Analog power 1.22 0.96 W
Digital power 0.2 0.18 W
Global power down 63 110 63 mW
Standby 208 250 208 mW

7.7 Electrical Characteristics, Dynamic Performance – 14-Bit ADC

Typical values are at 25°C, AVDD = 3.3V, LVDD = 1.8 V, 50% clock duty cycle, –1-dBFS differential analog input (unless otherwise noted); MIN and MAX values are across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, LVDD = 1.8 V
PARAMETERS TEST CONDITIONS 100 MSPS UNIT
MIN TYP MAX
SNR
Signal-to-noise ratio
fin = 5 MHz 67.5 74 dBFS
finv = 30 MHz 73
fin = 65 MHz 71.3
SINAD
Signal-to-noise and distortion ratio
fin = 5 MHz 65.8 73.5 dBFS
fin = 30 MHz 71.9
finn = 65 MHz 70.3
SFDR
Spurious-free dynamic range
fin = 5 MHz 71.8 85 dBc
fin = 30 MHz 81
fin = 65 MHz 78
THD
Total harmonic distortion
fin = 5 MHz 69 83.5 dBc
fin = 30 MHz 78
fin = 65 MHz 76.5
HD2
Second harmonic Distortion
fin = 5 MHz 71.8 92 dBc
fin = 30 MHz 84
fin = 65 MHz 80
HD3
Third harmonic distortion
fin = 5 MHz 71.8 85 dBc
fin = 30 MHz 81
fin = 65 MHz 78

7.8 Digital Characteristics

The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD = 3.3V, LVDD = 1.8V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DIGITAL INPUTS – RESET, SCLK, SDATA, CS, PDN, SYNC, INT/EXT
VIH High-level input voltage All digital inputs support 1.8-V and 3.3-V CMOS logic levels. 1.3 V
VIL Low-level input voltage 0.4 V
IIH High-level input current SDATA, SCLK, CS (1) VHIGH = 1.8 V 5 μA
IIL Low-level input current SDATA, SCLK, CS VLOW = 0 V 0 μA
DIGITAL CMOS OUTPUT – SDOUT
VOH High-level output voltage IOH = 100 µA AVDD – 0.05 V
VOL Low-level output voltage IOL = 100 µA 0.05 V
DIGITAL OUTPUTS – LVDS INTERFACE (OUT1P/M TO OUT8P/M, ADCLKP/M, LCLKP/M)
VODH High-level output differential voltage With external 100-Ω termination 275 370 465 mV
VODL Low-level output differential voltage With external 100-Ω termination –465 –370 –275 mV
VOCM Output common-mode voltage 1000 1200 1400 mV
(1) CS, SDATA, SCLK have internal 300-kΩ pulldown resistor.

7.9 Timing Requirements(1)

Typical values are at 25°C, AVDD = 3.3 V, LVDD = 1.8 V, sampling frequency = 100 MSPS, sine wave input clock = 1.5 Vpp clock amplitude, CLOAD = 5 pF(2), RLOAD = 100 Ω(3), unless otherwise noted. MIN and MAX values are across the full temperature range, TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, LVDD = 1.7 V to 1.9 V
MIN TYP MAX UNIT
tj Aperture jitter 220 fs rms
tA Aperture delay Time delay between rising edge of input clock and the actual sampling instant 3 ns
Wake-up time Time to valid data after coming out of STANDBY mode 10 μs
Time to valid data after coming out of global power down 60
ADC latency Latency of ADC alone, excludes the delay from input clock to output clock (tPDI), Figure 3 16 Clock cycles
2 WIRE, 8× SERIALIZATION (4)
tsu Data setup time Data valid (5) to zero-crossing of LCLKP 0.23 ns
th Data hold time Zero-crossing of LCLKP to data becoming invalid(5) 0.31 ns
tPDI Clock propagation delay Input clock rising edge crossover to output frame clock ADCLKP rising edge crossover, tPDI = (ts/4) + tdelay 6.8 8.8 10.8 ns
Variation of tPDI Between two devices at same temperature and LVDD supply ±0.6 ns
LVDS bit clock duty cycle Duty cycle of differential clock, (LCLKP-LCLKM) 50%
tRISE
tFALL
Data rise time,
Data fall time
Rise time measured from –100 mV to 100 mV,
Fall time measured from 100 mV to –100 mV
10 MSPS ≤ Sampling frequency ≤ 100 MSPS
0.17 ns
tCLKRISE
tCLKFALL
Output clock rise time,
Output clock fall time
Rise time measured from –100 mV to 100 mV
Fall time measured from 100 mV to –100 mV
10 MSPS ≤ Sampling frequency ≤ 100 MSPS
0.2 ns
(1) Timing parameters are ensured by design and characterization and not tested in production.
(2) CLOAD is the effective external single-ended load capacitance between each output pin and ground.
(3) RLOAD is the differential load resistance between the LVDS output pair.
(4) Measurements are done with a transmission line of 100-Ω characteristic impedance between the device and the load. Setup and hold time specifications take into account the effect of jitter on the output data and clock.
(5) Data valid refers to logic HIGH of 100 mV and logic LOW of –100 mV.

7.10 LVDS Timing at Lower Sampling Frequencies - 2 Wire, 8× Serialization

SAMPLING FREQUENCY, MSPS SETUP TIME HOLD TIME UNIT
MIN TYP MAX MIN TYP MAX
100 0.23 0.31 ns
80 0.47 0.47 ns
65 0.56 0.7 ns
50 0.66 1 ns
20 2.7 2.8 ns

7.11 LVDS Timing for 1 Wire 16× Serialization

SAMPLING FREQUENCY, MSPS SETUP TIME HOLD TIME UNIT
MIN TYP MAX MIN TYP MAX
65 0.15 0.31 ns
50 0.27 0.35 ns
40 0.45 0.55 ns
20 1.1 1.4 ns
Clock Propagation Delay
tPDI = (ts/8) + tdelay
10 MSPS < Sampling Frequency < 65 MSPS
tdelay ns
MIN TYP MAX ns
6.8 8.8 10.8 ns

7.12 LVDS Timing for 2 Wire, 7× Serialization

SAMPLING FREQUENCY, MSPS SETUP TIME HOLD TIME UNIT
MIN TYP MAX MIN TYP MAX
100 0.29 0.39 ns
80 0.51 0.60 ns
65 0.58 0.82 ns
50 0.85 1.20 ns
20 3.2 3.3 ns
Clock Propagation Delay
tPDI = (ts/3.5) + tdelay
10 MSPS < Sampling Frequency < 100 MSPS
tdelay ns
MIN TYP MAX ns
6.8 8.8 10.8 ns

7.13 LVDS Timing for 1 Wire, 14× Serialization

SAMPLING FREQUENCY, MSPS SETUP TIME HOLD TIME UNIT
MIN TYP MAX MIN TYP MAX
65 0.19 0.28 ns
50 0.37 0.42 ns
30 0.70 1.0 ns
20 1.3 1.5 ns
Clock Propagation Delay
tPDI = (ts/7) + tdelay
10 MSPS < Sampling Frequency < 65 MSPS
tdelay ns
MIN TYP MAX ns
6.8 8.8 10.8 ns

7.14 Serial Interface Timing Requirements

Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C, AVDD = 3.3 V, LVDD = 1.8 V, unless otherwise noted.
MIN TYP MAX UNIT
fSCLK SCLK frequency (= 1/ tSCLK) > DC 20 MHz
tSLOADS CS to SCLK setup time 25 ns
tSLOADH SCLK to CS hold time 25 ns
tDS SDATA setup time 25 ns
tDH SDATA hold time 25 ns

7.15 Reset Switching Characteristics

Typical values at 25°C, MIN and MAX values across the full temperature range TMIN = –40°C to TMAX = 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t1 Power-on delay Delay from power up of AVDD and LVDD to RESET pulse active 1 ms
t2 Reset pulse duration Pulse duration of active RESET signal 50 ns
t3 Register write delay Delay from RESET disable to CS active 100 ns
ADS5263 reset_tim_las760.gif

NOTE:

A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset. For parallel interface operation, RESET has to be tied permanently HIGH.
Figure 1. Reset Timing Diagram
ADS5263 LVDS_tims_las760.gif Figure 2. LVDS Timing
ADS5263 Latency-diag_v2_SLAS760.gif Figure 3. Latency Diagram
ADS5263 LVDS_vo_lev_las760.gif Figure 4. LVDS Output Voltage Levels

7.16 Typical Characteristics

7.16.1 Typical Characteristic – 16-Bit ADC Mode

All plots are at 25°C, AVDD = 3.3 V, LVDD = 1.8 V, maximum-rated sampling frequency, sine-wave input clock = 1.5 VPP differential clock amplitude, 50% clock duty cycle, –1 dBFS differential analog input, internal reference mode, 0 dB gain, 32k point FFT (unless otherwise noted).
ADS5263 G001_40_3_LAS760.gif Figure 5. FFT for 3-MHz Input Signal, fS = 40 MSPS
ADS5263 G003_80_3_LAS760.gif Figure 7. FFT for 3-MHz Input Signal, fS = 80 MSPS
ADS5263 G005_80_65_LAS760.gif Figure 9. FFT for 65-MHz Input Signal, fS = 80 MSPS
ADS5263 G007_100_15_LAS760.gif Figure 11. FFT for 15-MHz Input Signal, fS = 100 MSPS
ADS5263 FFT_130M_IF.png Figure 13. FFT for 130-MHz Input Signal, fS = 100 MSPS
ADS5263 G010_SFDR_INPUT_Frq.png Figure 15. SFDR vs Input Frequency
ADS5263 G012_SFDR_100MSPS_gain.png Figure 17. SFDR Across Gain
ADS5263 G014_PERF_ACROSS_AIN_LAS760.png Figure 19. Performance Across Input Amplitude,
Single Tone
ADS5263 G015_perf_VCM.png Figure 21. Performance vs Input Common-Mode Voltage
ADS5263 G017_SNR_across_temperature_samplerate_80MSPS.png Figure 23. SNR Across Temperature vs AVDD Supply, Sample Rate = 80 MSPS
ADS5263 SFDR_across_Temperature_samplerate=100MSPS.png Figure 25. SFDR Across Temperature
Sample Rate = 100 MSPS
ADS5263 Performance_across_LVDDSupply_samplerate=100MSPS.png Figure 27. Performance Across LVDD Supply
Sample Rate = 100 MSPS
ADS5263 G020_clk_duty_cycle.png Figure 29. Performance Across Input Clock Duty Cycle,
Sample Rate = 100 MSPS
ADS5263 G022_fin3_fa3_far_100_LAS760.gif Figure 31. Far-Channel Crosstalk Spectrum
ADS5263 G024_DNL_3_100_Vishwaas16_x2380R18_LAS760.png Figure 33. Differential Non-Linearity
ADS5263 G002_40_15_LAS760.gif Figure 6. FFT for 15-MHz Input Signal, fS = 40 MSPS
ADS5263 G004_80_15_LAS760.gif Figure 8. FFT for 15-MHz Input Signal, fS = 80 MSPS
ADS5263 G006_100_3_LAS760.gif Figure 10. FFT for 3-MHz Input Signal, fS = 100 MSPS
ADS5263 G008_100_65_LAS760.gif Figure 12. FFT for 65-MHz Input Signal, fS = 100 MSPS
ADS5263 G009_IMD_FFT_8_10_LAS760.gif Figure 14. FFT for 2-Tone Input Signal
ADS5263 G011_SNR_INPUT_Frq.png Figure 16. SNR vs Input Frequency
ADS5263 G013_SNR_100MSPS.png Figure 18. SNR Across Gain
ADS5263 G041_Perf_across_AIN_High_IF.png Figure 20. SNR Across Input Amplitude
vs Input Frequency
ADS5263 G016_SFDR_across_temperature_samplerate_80MSPS.png Figure 22. SFDR Across Temperature vs AVDD Supply, Sample Rate = 80 MSPS
ADS5263 G018_Performance_across_LVDD_Supply_samplerate_80MSPS.png Figure 24. Performance Across LVDD Supply Voltage,
Sample Rate = 80 MSPS
ADS5263 SNR_across_Temperature_samplerate=100MSPS.png Figure 26. SNR Across Temperature
Sample Rate = 100 MSPS
ADS5263 G019_Differential Clock Amplitude_LAS760.png Figure 28. Performance Across Input Clock Amplitude, Sample Rate = 100 MSPS
ADS5263 G021_Crosstalk_3V_3A_Near_LAS760.gif Figure 30. Near-Channel Crosstalk Spectrum,
Sample Rate = 100 MSPS
ADS5263 G023_INL_3_100_Vishwaas16_x2380R18_LAS760.png Figure 32. Integral Non-Linearity
ADS5263 G025_Histogram_Of_output_code.png
Figure 34. Histogram of Output Code
with Analog Inputs Shorted

7.16.2 Typical Characteristic – 14-Bit ADC Mode

ADS5263 G026_3_100_14bit_LAS760.gif Figure 35. FFT for 3-MHz Input Signal, fS = 100 MSPS
ADS5263 G028_65_100_14bit_LAS760.gif Figure 37. FFT for 65-MHz Input Signal, fS = 100 MSPS
ADS5263 G027_15_100_14bit_LAS760.gif Figure 36. FFT for 15-MHz Input Signal, fS = 100 MSPS

7.16.3 Typical Characteristics – Common Plots

ADS5263 G030_Digital_power_16bit_LAS760.png Figure 38. 16-Bit Digital Power Across Sampling Frequencies
ADS5263 G037_SNR_Contour_16BitADC.png
Figure 40. SNR Contour Across Sampling and Input Frequencies, 16-Bit ADC
ADS5263 G039_SNR_Contour_14BitADC.png Figure 42. SNR Contour Across Sampling and Input Frequencies, 14-Bit ADC
ADS5263 G031_Digital power_14 bit_LAS760.png Figure 39. 14-Bit Digital Power Across Sampling Frequencies
ADS5263 G038_SFDR_Contour_16BitADC.png
Figure 41. SFDR Contour Across Sampling and Input Frequencies, 16-Bit ADC
ADS5263 G040_SFDR_Contour_14BitADC.png Figure 43. SFDR Contour Across Sampling and Input Frequencies, 14-Bit ADC