SLAS492B September   2005  – August 2016 ADS7886

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Driving the VIN and VDD Pins
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operation
      2. 8.4.2 Power Down Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resource
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
+IN to AGND –0.3 VDD +0.3 V
+VDD to AGND –0.3 7 V
Digital input voltage to GND –0.3 7 V
Digital output to GND –0.3 (VDD + 0.3) V
Power dissipation, SOT-23 and SC70 packages (TJ Max–TA)/RθJA
Lead temperature, soldering Vapor phase (60 s) 215 °C
Infrared (15 s) 220
Junction temperature (TJ Max) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
TA Operating temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) ADS7886 UNIT
DBV (SOT-23) DCK (SC70)
6 PINS 6 PINS
RθJA Junction-to-ambient thermal resistance 113.4 149.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 54.3 58.9 °C/W
RθJB Junction-to-board thermal resistance 35.3 41.9 °C/W
ψJT Junction-to-top characterization parameter 4.6 1.5 °C/W
ψJB Junction-to-board characterization parameter 35 41.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

7.5 Electrical Characteristics

+VDD = 2.35 V to 5.25 V, TA = –40°C to 125°C, f(sample) = 1 MHz (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Full-scale input voltage span(1) 0 VDD V
Absolute input voltage range +IN –0.2 VDD+0.2 V
CI Input capacitance(2) 21 pF
Ilkg Input leakage current TA = 125°C 40 nA
SYSTEM PERFORMANCE
Resolution 12 Bits
No missing codes ADS7886SB 12 Bits
ADS7886S 11
INL Integral nonlinearity ADS7886SB –1.25 ±0.65 1.25 LSB(3)
ADS7886S 2 2
DNL Differential nonlinearity ADS7886SB –1 +0.4/-0.65 1 LSB
ADS7886S –2 2
EO Offset error(4) VDD = 2.35 V to 3.6 V –2.5 ±0.5 2.5 LSB
VDD = 4.75 V to 5.25 V –2 ±0.5 2
EG Gain error –1.75 ±0.5 1.75 LSB
SAMPLING DYNAMICS
Conversion time 20-MHz SCLK 760 800 ns
Acquisition time 325 ns
Maximum throughput rate 20-MHz SCLK 1 MHz
Aperture delay 5 ns
Step Response 160 ns
Overvoltage recovery 160 ns
DYNAMIC CHARACTERISTICS
SNR Signal-to-noise ratio VDD = 2.35 V to 3.6 V, fI = 100 kHz 69 71.25 dB
VDD = 4.75 V to 5.25 V, fI = 100 kHz 70 72.25
SINAD Signal-to-noise and distortion VDD = 2.35 V to 3.6 V, fI = 100 kHz 69 71.25 dB
VDD = 4.75 V to 5.25 V, fI = 100 kHz 70 72.25
THD Total harmonic distortion(5) fI = 100 kHz –84 dB
SFDR Spurious free dynamic range fI = 100 kHz 85.5 dB
Full power bandwidth At –3 dB 15 MHz
DIGITAL INPUT/OUTPUT
Logic family — CMOS
VIH High-level input voltage VDD = 2.35 V to 3.6 V 1.8 5.25 V
VDD = 3.6 V to 5.25 V 2.4 5.25
VIL Low-level input voltage VDD = 5 V 0.8 V
VDD = 3 V 0.4
VOH High-level output voltage I(source) = 200 µA VDD – 0.2 V
VOL Low-level output voltage I(sink) = 200 µA 0.4
POWER SUPPLY REQUIREMENTS
+VDD Supply voltage 2.35 3.3 5.25 V
Supply current (normal mode) VDD = 2.35 V to 3.6 V, 1-MHz throughput 1.3 1.5 mA
VDD = 4.75 V to 5.25 V, 1-MHz throughput 1.5 2
VDD = 2.35 V to 3.6 V, static state 1.1
VDD = 4.75 V to 5.25 V, static state 1.5
Power down state supply current SCLK off 1 µA
SCLK on (20 MHz) 200
Power dissipation at 1-MHz throughput VDD = 3 V 3.9 4.5 mW
VDD = 5 V 7.5 10
Power dissipation in static state VDD = 3 V 3.3 mW
VDD = 5 V 7.5
Power-up time 0.1 µs
Invalid conversions after
power up or reset
1
(1) Ideal input span; does not include gain or offset error.
(2) See Figure 27 for details on the sampling circuit.
(3) LSB means least significant bit.
(4) Measured relative to an ideal full-scale input.
(5) Calculated on the first nine harmonics of the input frequency.

7.6 Timing Requirements

All specifications typical at TA = –40°C to 125°C, VDD = 2.35 V to 5.25 V (see Figure 1 and Figure 2) (unless otherwise specified)(1).
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
tconv Conversion time ADS7866 VDD = 3 V 16 × tSCLK ns
VDD = 5 V 16 × tSCLK
tq Minimum quiet time needed from bus 3-state to start of next conversion VDD = 3 V 40 ns
VDD = 5 V 40
td1 Delay time, CS low to first data (0) out VDD = 3 V 15 25 ns
VDD = 5 V 13 25
tsu1 Setup time, CS low to SCLK low VDD = 3 V 10 ns
VDD = 5 V 10
td2 Delay time, SCLK falling to SDO VDD = 3 V 15 25 ns
VDD = 5 V 13 25
th1 Hold time, SCLK falling to data valid(2) VDD < 3 V 7 ns
VDD > 5 V 5.5
td3 Delay time, 16th SCLK falling edge to SDO 3-state VDD = 3 V 10 25 ns
VDD = 5 V 8 20
tw1 Pulse duration, CS VDD = 3 V 25 40 ns
VDD = 5 V 25 40
td4 Delay time, CS high to SDO 3-state VDD = 3 V 17 30 ns
VDD = 5 V 15 25
twH Pulse duration, SCLK high VDD = 3 V 0.4 × tSCLK ns
VDD = 5 V 0.4 × tSCLK
twL Pulse duration, SCLK low VDD = 3 V 0.4 × tSCLK ns
VDD = 5 V 0.4 × tSCLK
Frequency, SCLK VDD = 3 V 20 MHz
VDD = 5 V 20
td5 Delay time, second falling edge of clock and CS to enter in power down (use min spec not to accidently enter in power down) Figure 2 VDD = 3 V –2 5 ns
VDD = 5 V –2 5
td6 Delay time, CS and 10th falling edge of clock to enter in power down (use max spec not to accidently enter in power down) Figure 2 VDD = 3 V 2 –5 ns
VDD = 5 V 2 –5
(1) 3-V Specifications apply from 2.35 V to 3.6 V, and 5-V specifications apply from 4.75 V to 5.25 V.
(2) With 50-pf load.
ADS7886 tim_87_las492.gif Figure 1. Interface Timing Diagram
ADS7886 ent_pdm_las492.gif Figure 2. Entering Power Down Mode

7.7 Typical Characteristics

ADS7886 idd_vdd_7_las492.gif
Figure 3. Supply Current vs Supply Voltage
ADS7886 idd_fs_7_las492.gif
Figure 5. Supply Current vs Sample Rate
ADS7886 sinad_fi_7_las492.gif
Figure 7. Signal-to-Noise Ratio vs Input Frequency
ADS7886 snr_v_ta_las492.gif
Figure 9. Signal-to-Noise Ratio vs Free-Air Temperature
ADS7886 thd_vdd_7_las492.gif
Figure 11. Total Harmonic Distortion vs Supply Voltage
ADS7886 sfdr_fi_7_las492.gif
Figure 13. Spurious Free Dynamic Range vs Input Frequency
ADS7886 sfdr_vdd_7_las492.gif
Figure 15. Spurious Free Dynamic Range vs Supply Voltage
ADS7886 eo_ta_7_las492.gif
Figure 17. Offset Error vs Free-Air Temperature
ADS7886 eg_ta_7_las492.gif
Figure 19. Gain Error vs Free-Air Temperature
ADS7886 dnl_v_ta_las492.gif
Figure 21. Differential Nonlinearity vs Free-Air Temperature
ADS7886 inl_v_ta_las492.gif
Figure 23. Integral Nonlinearity vs Free-Air Temperature
ADS7886 idd_fsclk_7_las492.gif
Figure 4. Supply Current vs SCLK Frequency
ADS7886 Ilkg_ta_las492.gif
Figure 6. Analog Input Leakage Current vs Free-Air Temperature
ADS7886 sinad_vdd_7_las492.gif
Figure 8. Signal-to-Noise Ratio vs Supply Voltage
ADS7886 thd_fi_7_las492.gif
Figure 10. Total Harmonic Distortion vs Input Frequency
ADS7886 thd_v_ta_las492.gif
Figure 12. Total Harmonic Distortion vs Free-Air Temperature
ADS7886 sfdr_vdd1_las492.gif
Figure 14. Spurious Free Dynamic Range vs Supply Voltage
ADS7886 eo_vdd_7_las492.gif
Figure 16. Offset Error vs Supply Voltage
ADS7886 eg_vdd_7_las492.gif
Figure 18. Gain Error vs Supply Voltage
ADS7886 dnl_v_vdd_las492.gif
Figure 20. Differential Linearity Error vs Supply Voltage
ADS7886 inl_v_vdd_las492.gif
Figure 22. Integral Nonlinearity vs Supply Voltage
ADS7886 dnl_7_las492.gif
Figure 24. DNL
ADS7886 fft_7_las492.gif
Figure 26. FFT
ADS7886 inl_7_las492.gif
Figure 25. INL