SBAS363E December   2009  – August 2016 ADS8331 , ADS8332

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Companion Products
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Electrical Characteristics: VA = 2.7 V
    6. 8.6  Electrical Characteristics: VA = 5 V
    7. 8.7  Timing Requirements: VA = 2.7 V
    8. 8.8  Timing Characteristics: VA = 5 V
    9. 8.9  Typical Characteristics: DC Performance
    10. 8.10 Typical Characteristics: AC Performance
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Signal Conditioning
      2. 9.3.2 Analog Input
        1. 9.3.2.1 Driver Amplifier Choice
        2. 9.3.2.2 Bipolar to Unipolar Driver
    4. 9.4 Device Functional Modes
      1. 9.4.1 Reference
      2. 9.4.2 Converter Operation
        1. 9.4.2.1 Manual Channel Select Mode
        2. 9.4.2.2 Auto Channel Select Mode
        3. 9.4.2.3 Start of a Conversion
        4. 9.4.2.4 Status Output Pin (EOC/INT)
        5. 9.4.2.5 Power-Down Modes and Acquisition Time
    5. 9.5 Programming
      1. 9.5.1 Digital Interface
        1. 9.5.1.1 Internal Register
      2. 9.5.2 Writing to the Converter
        1. 9.5.2.1 Configuring the Converter and Default Mode
      3. 9.5.3 Reading the Configuration Register
      4. 9.5.4 Reading the Conversion Result
        1. 9.5.4.1 TAG Mode
        2. 9.5.4.2 Daisy-Chain Mode
      5. 9.5.5 Reset Function
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 ADC Reference Driver
        1. 10.1.1.1 Reference Driver Circuit for VREF = 4.096 V
        2. 10.1.1.2 Reference Driver Circuit for VREF=2.5 V, VA=2.7 V
      2. 10.1.2 ADC Input Driver
        1. 10.1.2.1 Input Amplifier Selection
        2. 10.1.2.2 ADC Input RC Filter
    2. 10.2 Typical Applications
      1. 10.2.1 DAQ Circuit for Low Noise and Distortion Performance for a 10-kHz Input Signal at 500 kSPS
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Ultra Low-Power DAQ Circuit for DC Input Signals at 10 kSPS per Channel
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Specifications

8.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage INX, MUXOUT, ADCIN, REF+ to AGND –0.3 VA + 0.3 V
COM, REF– to AGND –0.3 0.3
VA to AGND –0.3 7
VBD to DGND –0.3 7
AGND to DGND –0.3 0.3
Digital input voltage to DGND –0.3 VBD + 0.3 V
Digital output voltage to DGND –0.3 VBD + 0.3 V
4 × 4 VQFN-24 Package Power dissipation (TJMax – TA) / RθJA W
RθJA thermal impedance 47 °C/W
TSSOP-24 Package Power dissipation (TJMax – TA) / θJA W
RθJA thermal impedance 47 °C/W
Operating free-air temperature, TA –40 85 °C
Junction temperature, TJ Max 150 °C
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

8.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VA Analog supply voltage 2.7 3 5.5 V
VBD Digital supply voltage 1.65 3 VA + 0.2 V

8.4 Thermal Information

THERMAL METRIC(1) ADS833x UNIT
RGE (VQFN) PW (TSSOP)
24 PINS 24 PINS
RθJA Junction-to-ambient thermal resistance 31.9 78.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 29.2 12.1 °C/W
RθJB Junction-to-board thermal resistance 8.7 33.8 °C/W
ψJT Junction-to-top characterization parameter 0.3 0.3 °C/W
ψJB Junction-to-board characterization parameter 8.7 33.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.25 NA °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

8.5 Electrical Characteristics: VA = 2.7 V

at TA = –40°C to 85°C, VA = 2.7 V, VBD = 1.65 V to 2.7 V, VREF = 2.5 V, and fSAMPLE = 500 kSPS (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Full-scale input voltage (1) INX – COM, ADCIN – COM 0 VREF V
Absolute input voltage INX, ADCIN AGND – 0.2 VA + 0.2 V
COM AGND – 0.2 AGND + 0.2
Input capacitance ADCIN 40 45 pF
Input leakage current Unselected ADC input ±1 nA
SYSTEM PERFORMANCE
Resolution 16 Bits
No missing codes 16 Bits
INL Integral linearity ADS8331I, ADS8332I –3 ±2 3 LSB(2)
ADS8331IB, ADS8332IB –2 ±1.2 2
DNL Differential linearity ADS8331I, ADS8332I –1 ±0.6 2 LSB(2)
ADS8331IB, ADS8332IB –1 ±0.6 1.5
EO Offset error(3) –0.5 ±0.15 0.5 mV
Offset error drift ±1 PPM/°C
Offset error matching –0.2 0.2 mV
EG Gain error –0.25 –0.06 0.25 %FSR
Gain error drift ±0.4 PPM/°C
Gain error matching –0.003 0.003 %FSR
Transition noise 28 μV RMS
PSRR Power-supply rejection ratio 74 dB
SAMPLING DYNAMICS
tCONV Conversion time 18 CCLK
tSAMPLE1 Acquisition time Manual-trigger mode 3 CCLK
tSAMPLE2 Auto-trigger mode 3
Throughput rate 500 kSPS
DYNAMIC CHARACTERISTICS
THD Total harmonic distortion (4) VIN = 2.5 VPP at 1 kHz –101 dB
VIN = 2.5 VPP at 10 kHz –95
SNR Signal-to-noise ratio VIN = 2.5 VPP at 1 kHz ADS8331I, ADS8332I 88 dB
ADS8331IB, ADS8332IB 89
VIN = 2.5 VPP at 10 kHz ADS8331I, ADS8332I 86.5
ADS8331IB, ADS8332IB 87.5
SINAD Signal-to-noise + distortion VIN = 2.5 VPP at 1 kHz ADS8331I, ADS8332I 87.5 dB
ADS8331IB, ADS8332IB 88.5
VIN = 2.5 VPP at 10 kHz ADS8331I, ADS8332I 86
ADS8331IB, ADS8332IB 87
SFDR Spurious-free dynamic range VIN = 2.5 VPP at 1 kHz 103 dB
VIN = 2.5 VPP at 10 kHz 98
Crosstalk VIN = 2.5 VPP at 1 kHz 125 dB
VIN = 2.5 VPP at 100 kHz 108
–3-dB small-signal bandwidth INX – COM with MUXOUT tied to ADCIN 17 MHz
ADCIN – COM 30
CLOCK
Internal conversion clock frequency 10.5 11 12.2 MHz
SCLK external serial clock Used as I/O clock only 25 MHz
Used as both I/O clock and conversion clock 1 21 MHz
EXTERNAL VOLTAGE REFERENCE INPUT
VREF Input reference range(5) (REF+) – (REF–) 1.2 2.525 V
(REF–) – AGND –0.1 0.1
Resistance (6) Reference input 20
DIGITAL INPUT/OUTPUT
Logic family CMOS
VIH High-level input voltage 1.65 V < VBD < 2.5 V 0.8 × VBD VBD + 0.3 V
2.5 V ≤ VBD ≤ VA 0.65 × VBD VBD + 0.3
VIL Low-level input voltage 1.65 < VBD < 2.5 V –0.3 0.1 × VBD V
2.5 V ≤ VBD ≤ VA –0.3 0.25 × VBD
II Input current VIN = VBD or DGND –1 1 μA
CI Input capacitance 5 pF
VOH High-level output voltage VA ≥ VBD ≥ 1.65V, IO = 100 μA VBD – 0.6 VBD V
VOL Low-level output voltage VA ≥ VBD ≥ 1.65 V, IO = –100 μA 0 0.4 V
CO SDO pin capacitance Hi-Z state 5 pF
CL Load capacitance 30 pF
Data format Straight binary
POWER-SUPPLY REQUIREMENTS
VA Analog supply voltage(5) 2.7 3.6 V
VBD Digital I/O supply voltage 1.65 VA + 0.2 V
IA Analog supply current fSAMPLE = 500 kSPS 5.2 6.5 mA
fSAMPLE = 250 kSPS in Auto-NAP mode 3.2
Nap mode, SCLK = VBD or DGND 325 400 μA
Deep PD mode, SCLK = VBD or DGND 50 250 nA
IBD Digital I/O supply current fSAMPLE = 500 kilobytes per second 0.1 0.4 mA
fSAMPLE = 250 kSPS in Auto-NAP mode 0.05
Power dissipation VA = 2.7 V, VBD = 1.65 V, fSAMPLE = 500 kSPS 14.2 18.2 mW
VA = 2.7V, VBD = 1.65 V, fSAMPLE = 250 kSPS in Auto-NAP mode 8.72
TEMPERATURE RANGE
TA Operating free-air temperature –40 85 °C
(1) Ideal input span; does not include gain or offset error.
(2) LSB means least significant bit.
(3) Measured relative to an ideal full-scale input (INX – COM) of 2.5 V when VA = 2.7 V.
(4) Calculated on the first nine harmonics of the input frequency.
(5) The ADS8331, ADS8332 operates with VA from 2.7 V to 5.5 V, and VREF between 1.2 V and VA. However, the device may not meet the specifications listed in the Electrical Characteristics when VA is from 3.6 V to 4.5 V.
(6) Can vary ±30%.

8.6 Electrical Characteristics: VA = 5 V

at TA = –40°C to 85°C, VA = 5 V, VBD = 1.65 V to 5 V, VREF = 4.096 V, and fSAMPLE = 500 kSPS (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Full-scale input voltage (1) INX – COM, ADCIN – COM 0 VREF V
Absolute input voltage INX, ADCIN AGND – 0.2 VA + 0.2 V
COM AGND – 0.2 AGND + 0.2
Input capacitance ADCIN 40 45 pF
Input leakage current Unselected ADC input ±1 nA
SYSTEM PERFORMANCE
Resolution 16 Bits
No missing codes 16 Bits
INL Integral linearity ADS8331I, ADS8332I –3 ±2 3 LSB(2)
ADS8331IB, ADS8332IB –2 ±1 2
DNL Differential linearity ADS8331I, ADS8332I –1 ±1 2 LSB(2)
ADS8331IB, ADS8332IB –1 ±0.5 1.5
EO Offset error(3) –1 ±0.23 1 mV
Offset error drift ±1 PPM/°C
Offset error matching –0.125 0.125 mV
EG Gain error –0.25 –0.06 0.25 %FSR
Gain error drift ±0.02 PPM/°C
Gain error matching –0.003 0.003 %FSR
Transition noise 30 μV RMS
PSRR Power-supply rejection ratio 78 dB
SAMPLING DYNAMICS
tCONV Conversion time 18 CCLK
tSAMPLE1 Acquisition time Manual-trigger mode 3 CCLK
tSAMPLE2 Auto-trigger mode 3
Throughput rate 500 kSPS
DYNAMIC CHARACTERISTICS
THD Total harmonic distortion (4) VIN = 4.096 VPP at 1 kHz –100 dB
VIN = 4.096 VPP at 10 kHz ADS8331I, ADS8332I –94
ADS8331IB, ADS8332IB –95
SNR Signal-to-noise ratio VIN = 4.096 VPP at 1 kHz ADS8331I, ADS8332I 90.5 dB
ADS8331IB, ADS8332IB 91.5
VIN = 4.096 VPP at 10 kHz 88
SINAD Signal-to-noise + distortion VIN = 4.096 VPP at 1 kHz ADS8331I, ADS8332I 90 dB
ADS8331IB, ADS8332IB 91
VIN = 4.096 VPP at 10 kHz 87
SFDR Spurious-free dynamic range VIN = 4.096 VPP at 1 kHz 101 dB
VIN = 4.096 VPP at 10 kHz 96
Crosstalk VIN = 4.096 VPP at 1 kHz 119 dB
VIN = 4.096 VPP at 100 kHz 107
–3-dB small-signal bandwidth INX – COM with MUXOUT tied to ADCIN 22 MHz
ADCIN – COM 40
CLOCK
Internal conversion clock frequency 10.9 11.5 12.6 MHz
SCLK external serial clock Used as I/O clock only 40 MHz
Used as both I/O clock and conversion clock 1 21
EXTERNAL VOLTAGE REFERENCE INPUT
VREF Input reference range(5) (REF+) – (REF–) 1.2 4.096 4.2 V
(REF–) – AGND –0.1 0.1
Resistance (6) Reference input 20
DIGITAL INPUT/OUTPUT
Logic family CMOS
VIH High-level input voltage 1.65 < VBD < 2.5 V 0.8 × VBD VBD + 0.3 V
2.5 V ≤ VBD ≤ VA 0.65 × VBD VBD + 0.3
VIL Low-level input voltage 1.65 < VBD < 2.5 V –0.3 0.1 × VBD V
2.5 V ≤ VBD ≤ VA –0.3 0.25 × VBD
II Input current VIN = VBD or DGND –1 1 µA
CI Input capacitance 5 pF
VOH High-level output voltage VA ≥ VBD ≥ 1.65 V, IO = 100 μA VBD – 0.6 VBD V
VOL Low-level output voltage VA ≥ VBD ≥ 1.65 V, IO = –100 μA 0 0.4 V
CO SDO pin capacitance Hi-Z state 5 pF
CL Load capacitance 30 pF
Data format Straight binary
POWER-SUPPLY REQUIREMENTS
VA Analog supply voltage(5) 4.5 5 5.5 V
VBD Digital I/O supply voltage 1.65 VA + 0.2 V
IA Analog supply current fSAMPLE = 500 kSPS 6.6 7.75 mA
fSAMPLE = 250 kSPS in Auto-NAP mode 4.2
Nap mode, SCLK = VBD or DGND 390 500 μA
Deep PD mode, SCLK = VBD or DGND 80 250 nA
IBD Digital I/O supply current fSAMPLE = 500 kSPS 1.2 2 mA
fSAMPLE = 250 kSPS in Auto-NAP mode 0.7
Power dissipation VA = 5 V, VBD = 5 V, fSAMPLE = 500 kSPS 39 48.75 mW
VA = 5 V, VBD = 5 V, fSAMPLE = 250 kSPS in Auto-NAP mode 24.5
TEMPERATURE RANGE
TA Operating free-air temperature –40 85 °C
(1) Ideal input span; does not include gain or offset error.
(2) LSB means least significant bit.
(3) Measured relative to an ideal full-scale input (INX – COM) of 4.096 V when VA = 5 V.
(4) Calculated on the first nine harmonics of the input frequency.
(5) The ADS8331, ADS8332 operates with VA from 2.7 V to 5.5 V, and VREF between 1.2 V and VA. However, the device may not meet the specifications listed in the Electrical Characteristics when VA is from 3.6 V to 4.5 V.
(6) Can vary ±30%.

8.7 Timing Requirements: VA = 2.7 V

at TA = –40°C to 85°C, VA = 2.7 V, and VBD = 1.65 V (unless otherwise noted)(1)(2)
MIN NOM MAX UNIT
fCCLK Frequency, conversion clock, CCLK External, fCCLK = 1/2 fSCLK 0.5 10.5 MHz
Internal 10.5 11 12.2
tSU1 Setup time, rising edge of CS to EOC(4) Read while converting 1 CCLK
tH1 CS hold time with respect to EOC(4) Read while sampling 25 ns
tWL1 Pulse duration, CONVST low 40 ns
tWH1 Pulse duration, CS high 40 ns
tSU2 Setup time, rising edge of CS to EOS Read while sampling 25 ns
tH2 CS hold time with respect to EOS Read while converting 25 ns
tSU3 Setup time, falling edge of CS to first falling edge of SCLK 14 ns
tWL2 Pulse duration, SCLK low 17 tSCLK – tWH2 ns
tWH2 Pulse duration, SCLK high 12 tSCLK – tWL2 ns
tSCLK Cycle time, SCLK I/O clock only 40 ns
I/O and conversion clocks 47.6 1000
I/O clock, daisy-chain mode 40
I/O and conversion clocks, daisy-chain mode 47.6 1000
tD1 Delay time, falling edge of SCLK to SDO invalid 10-pF load 8 ns
tD2 Delay time, falling edge of SCLK to SDO valid 10-pF load 35 ns
tD3 Delay time, falling edge of CS to SDO valid, SDO MSB output 10-pF load 35 ns
tSU4 Setup time, SDI to falling edge of SCLK 8 ns
tH3 Hold time, SDI to falling edge of SCLK 8 ns
tD4 Delay time, rising edge of CS to SDO 3-state 10-pF load 15 ns
tSU5 Setup time, last falling edge of SCLK before rising edge of CS 15 ns
tH4 Hold time, last falling edge of SCLK before rising edge of CS 2 ns
tSU6(3) Setup time, rising edge of SCLK to rising edge of CS 10 ns
tH5(3) Hold time, rising edge of SCLK to rising edge of CS 2 ns
tD5 Delay time, falling edge of CS to deactivation of INT 10-pF load 40 ns
(1) All input signals are specified with tr = tf = 1.5 ns (10% to 90% of VBD) and timed from a voltage level of (VIL + VIH) / 2.
(2) See the timing diagrams.
(3) Applies to the 5th or 17th rising SCLK when sending 4-bit or 16-bit commands, respectively, to the ADS8331, ADS8332.
(4) The EOC and EOS signals are the inverse of each other.

8.8 Timing Characteristics: VA = 5 V

at TA = –40°C to 85°C, and VA = VBD = 5 V (unless otherwise noted)(1)(2)
MIN TYP MAX UNIT
fCCLK Frequency, conversion clock, CCLK External, fCCLK = 1/2 fSCLK 0.5 10.5 MHz
Internal 10.9 11.5 12.6
tSU1 Setup time, rising edge of CS to EOC(4) Read while converting 1 CCLK
tH1 CS hold time with respect to EOC(4) Read while sampling 20 ns
tWL1 Pulse duration, CONVST low 40 ns
tWH1 Pulse duration, CS high 40 ns
tSU2 Setup time, rising edge of CS to EOS Read while sampling 20 ns
tH2 CS hold time with respect to EOS Read while converting 20 ns
tSU3 Setup time, falling edge of CS to first falling edge of SCLK 8 ns
tWL2 Pulse duration, SCLK low 12 tSCLK – tWH2 ns
tWH2 Pulse duration, SCLK high 11 tSCLK – tWL2 ns
tSCLK Cycle time, SCLK I/O clock only 25 ns
I/O and conversion clocks 47.6 1000
I/O clock, daisy-chain mode 25
I/O and conversion clocks, daisy-chain mode 47.6 1000
tD1 Delay time, falling edge of SCLK to SDO invalid 10-pF load 5 ns
tD2 Delay time, falling edge of SCLK to SDO valid 10-pF load 20 ns
tD3 Delay time, falling edge of CS to SDO valid, SDO MSB output 10-pF load 20 ns
tSU4 Setup time, SDI to falling edge of SCLK 8 ns
tH3 Hold time, SDI to falling edge of SCLK 8 ns
tD4 Delay time, rising edge of CS to SDO 3-state 10-pF load 10 ns
tSU5 Setup time, last falling edge of SCLK before rising edge of CS 10 ns
tH4 Hold time, last falling edge of SCLK before rising edge of CS 2 ns
tSU6(3) Setup time, rising edge of SCLK to rising edge of CS 10 ns
tH5(3) Hold time, rising edge of SCLK to rising edge of CS 2 ns
tD5 Delay time, falling edge of CS to deactivation of INT 10-pF load 20 ns
(1) All input signals are specified with tr = tf = 1.5 ns (10% to 90% of VBD) and timed from a voltage level of (VIL + VIH) / 2.
(2) See the timing diagrams.
(3) Applies to the 5th or 17th rising SCLK when sending 4-bit or 16-bit commands, respectively, to the ADS8331, ADS8332.
(4) The EOC and EOS signals are the inverse of each other.
ADS8331 ADS8332 tim_read_sample_bas363.gif Figure 1. Read While Sampling (Shown With Manual-Trigger Mode)
ADS8331 ADS8332 tim_read_convert_bas363.gif Figure 2. Read While Converting (Shown With Auto-Trigger Mode at 500 kSPS)
ADS8331 ADS8332 tim_spi_io_bas363.gif Figure 3. SPI I/O
ADS8331 ADS8332 tim_cs_eoc_int_bas363.gif Figure 4. Relationship among CS, EOC, and INT

8.9 Typical Characteristics: DC Performance

at TA = 25°C, VREF (REF+ – REF–) = 4.096 V when VA = VBD = 5 V or VREF (REF+ – REF–) = 2.5 V when VA = VBD = 2.7 V, fSCLK = 21 MHz, and fSAMPLE = 500 kSPS (unless otherwise noted)
ADS8331 ADS8332 tc_inl_27v_bas363.gif
Figure 5. Integral Linearity Error vs Code
ADS8331 ADS8332 tc_dnl_27v_bas363.gif
Figure 7. Differential Linearity Error vs Code
ADS8331 ADS8332 tc_ia-va_bas363.gif
Figure 9. Analog Supply Current vs Analog Supply Voltage
ADS8331 ADS8332 tc_ia-rate_bas363.gif
Figure 11. Analog Supply Current vs Sampling Rate in Auto-NAP Mode
ADS8331 ADS8332 tc_frq-va_bas363.gif
Figure 13. Internal Clock Frequency vs
Analog Supply Voltage
ADS8331 ADS8332 tc_offset-tmp_bas363.gif
Figure 15. Change in Offset vs Temperature
ADS8331 ADS8332 tc_ibd-tmp_bas363.gif
Figure 17. Change in Digital Supply Current vs Temperature
ADS8331 ADS8332 tc_nap-tmp_bas363.gif
Figure 19. Change in Analog Supply Current in NAP Mode vs Temperature
ADS8331 ADS8332 tc_inl_5v_bas363.gif
Figure 6. Integral Linearity Error vs Code
ADS8331 ADS8332 tc_dnl_5v_bas363.gif
Figure 8. Differential Linearity Error vs Code
ADS8331 ADS8332 tc_nap-va_bas363.gif
Figure 10. Analog Supply Current in NAP Mode vs
Analog Supply Voltage
ADS8331 ADS8332 tc_ipd-tmp_bas363.gif
Figure 12. Deep Power-Down Current vs Temperature
ADS8331 ADS8332 tc_gain-tmp_bas363.gif
Figure 14. Change in Gain vs Temperature
ADS8331 ADS8332 tc_ia-tmp_bas363.gif
Figure 16. Change in Analog Supply Current vs Temperature
ADS8331 ADS8332 tc_frq-tmp_bas363.gif
Figure 18. Change in Internal Clock Frequency vs Temperature

8.10 Typical Characteristics: AC Performance

at TA = 25°C, VREF (REF+ – REF–) = 4.096 V when VA = VBD = 5 V or VREF (REF+ – REF–) = 2.5 V when VA = VBD = 2.7 V, fSCLK = 21 MHz, and fSAMPLE = 500 kSPS (unless otherwise noted)
ADS8331 ADS8332 tc_histo_27v_bas363.gif
Figure 20. Output Code Histogram for a DC Input
(8192 Conversions)
ADS8331 ADS8332 tc_freq_1k_27v_bas363.gif
Figure 22. Frequency Spectrum
(8192 Point FFT, fIN = 1.0376 kHz, –0.2 dB)
ADS8331 ADS8332 tc_freq_10k_27v_bas363.gif
Figure 24. Frequency Spectrum
(8192 Point FFT, fIN = 10.0708 kHz, –0.2 dB)
ADS8331 ADS8332 tc_sinad-tmp_bas363.gif
Figure 26. Signal-to-Noise + Distortion vs Temperature
ADS8331 ADS8332 tc_thd-frq_bas363.gif
Figure 28. Total Harmonic Distortion vs Input Frequency
ADS8331 ADS8332 tc_sinad-frq_bas363.gif
Figure 30. Signal-to-Noise + Distortion vs Input Frequency
ADS8331 ADS8332 tc_psrr-frq_bas363.gif
Figure 32. Power-Supply Rejection Ratio vs Power-Supply Ripple Frequency
ADS8331 ADS8332 tc_histo_5v_bas363.gif
Figure 21. Output Code Histogram for a DC Input
(8192 Conversions)
ADS8331 ADS8332 tc_freq_1k_5v_bas363.gif
Figure 23. Frequency Spectrum
(8192 Point FFT, fIN = 1.0376 kHz, –0.2 dB)
ADS8331 ADS8332 tc_freq_10k_5v_bas363.gif
Figure 25. Frequency Spectrum
(8192 Point FFT, fIN = 10.0708 kHz, –0.2 dB)
ADS8331 ADS8332 tc_snr-frq_bas363.gif
Figure 27. Signal-to-Noise Ratio vs
Input Frequency
ADS8331 ADS8332 tc_sfdr-frq_bas363.gif
Figure 29. Spurious-Free Dynamic Range vs Input Frequency
ADS8331 ADS8332 tc_enob-frq_bas363.gif
Figure 31. Effective Number of Bits vs Input Frequency
ADS8331 ADS8332 tc_crosstalk-frq_bas363.gif
Figure 33. Crosstalk vs Input Frequency