ZHCSPS0A May   2023  – June 2024 AFE78201 , AFE88201

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1  绝对最大额定值
    2. 5.2  ESD 等级
    3. 5.3  建议运行条件
    4. 5.4  热性能信息
    5. 5.5  电气特性
    6. 5.6  时序要求
    7. 5.7  时序图
    8. 5.8  典型特性:VOUT DAC
    9. 5.9  典型特性:ADC
    10. 5.10 典型特性:参考文献
    11. 5.11 典型特性:电源
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1  数模转换器 (DAC) 概述
        1. 6.3.1.1 DAC 电阻串
        2. 6.3.1.2 DAC 缓冲器放大器
        3. 6.3.1.3 DAC 传递函数
        4. 6.3.1.4 DAC 增益和偏移校准
        5. 6.3.1.5 可编程压摆率
        6. 6.3.1.6 DAC 寄存器结构和清除状态
      2. 6.3.2  模数转换器 (ADC) 概述
        1. 6.3.2.1 ADC 操作
        2. 6.3.2.2 ADC 自定义通道序列发生器
        3. 6.3.2.3 ADC 同步
        4. 6.3.2.4 ADC 偏移校准
        5. 6.3.2.5 外部监控输入
        6. 6.3.2.6 温度传感器
        7. 6.3.2.7 自诊断多路复用器
        8. 6.3.2.8 ADC 旁路
      3. 6.3.3  可编程超限警报
        1. 6.3.3.1 基于警报的中断
        2. 6.3.3.2 警报操作配置寄存器
        3. 6.3.3.3 警报电压发生器
        4. 6.3.3.4 温度传感器警报功能
        5. 6.3.3.5 内部基准警报功能
        6. 6.3.3.6 ADC 警报功能
        7. 6.3.3.7 故障检测
      4. 6.3.4  IRQ
      5. 6.3.5  内部基准
      6. 6.3.6  集成精密振荡器
      7. 6.3.7  精密振荡器诊断
      8. 6.3.8  一次性可编程 (OTP) 存储器
      9. 6.3.9  GPIO
      10. 6.3.10 计时器
      11. 6.3.11 唯一芯片标识符 (ID)
      12. 6.3.12 暂存区寄存器
    4. 6.4 器件功能模式
      1. 6.4.1 寄存器内置自检 (RBIST)
      2. 6.4.2 DAC 断电模式
      3. 6.4.3 复位
    5. 6.5 编程
      1. 6.5.1 通信设置
        1. 6.5.1.1 SPI 模式
        2. 6.5.1.2 UART 模式
      2. 6.5.2 GPIO 编程
      3. 6.5.3 串行外设接口 (SPI)
        1. 6.5.3.1 SPI 帧定义
        2. 6.5.3.2 SPI 读取和写入
        3. 6.5.3.3 帧错误校验
        4. 6.5.3.4 同步
      4. 6.5.4 UART 接口
        1. 6.5.4.1 UART 中断模式 (UBM)
      5. 6.5.5 状态位
      6. 6.5.6 看门狗计时器
  8. 寄存器映射
    1. 7.1 AFEx8201 寄存器
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 多通道配置
    2. 8.2 典型应用
      1. 8.2.1 模拟输出模块
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
          1. 8.2.1.2.1 XTR305
            1. 8.2.1.2.1.1 电流输出模式
            2. 8.2.1.2.1.2 电压输出模式
            3. 8.2.1.2.1.3 诊断功能
        3. 8.2.1.3 应用曲线
    3. 8.3 初始化设置
    4. 8.4 电源相关建议
    5. 8.5 布局
      1. 8.5.1 布局指南
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 文档支持
      1. 9.1.1 相关文档
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 商标
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RRU|24
散热焊盘机械数据 (封装 | 引脚)
订购信息

警报电压发生器

图 6-12 显示了警报电压是独立于 DAC 输出电压生成的。警报极性控制逻辑可以选择警报电压发生器的输出电平。警报操作控制逻辑可以在 DAC 输出电压和警报电压发生器输出电压之间进行选择。警报操作控制逻辑还可以控制输出缓冲器高阻态开关。

AFE78201 AFE88201 警报电压发生器架构图 6-12 警报电压发生器架构

在正常运行期间,预期的 VOUT 电压取决于 DAC_CODE。SD4 (VOUT) 诊断通道的 ADC 阈值是围绕已编程的 DAC_CODE 进行设置的。在警报条件下,如果警报操作将 VOUT 电压更改为警报电压或将 VOUT 缓冲器切换到高阻态模式,则 VOUT 电压不再取决于 DAC_CODE。在这种情况下,SD4 (VOUT) 诊断通道也会报告警报。要清除该警报,只要所有其他警报条件都已清除,即可将警报操作设置为无操作或 DAC 清除代码。应用任一警报操作都会将 VOUT 电压设置在预期的 ADC 阈值范围内,并在 SD4 (VOUT) 通道的下一次 ADC 测量后清除警报。

应特别注意瞬态事件期间的警报逻辑。当新的 DAC_CODE 超过 SD4 (VOUT) 警报阈值且 ADC 在自动模式下监控 SD4 (VOUT) 输入时,可能会在 VOUT 稳定到一个新值的同时发生 ADC 转换。这种转换可能会触发误报。有两种方法可以防止这种误报:

  1. 使用直接模式并让 VOUT 在触发下一次 ADC 转换之前稳定下来。
  2. 设置 ADC_CFG.FLT_CNT > 0。在该配置下,SD4 或任何其他测量中的单个错误不会导致将警报条件置为有效。