ZHCS161D April   2011  – July 2015 AMC1200

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Insulation Characteristics
      2. 7.3.2 IEC 61000-4-5 Ratings
      3. 7.3.3 IEC 60664-1 Ratings
      4. 7.3.4 Package Characteristics
      5. 7.3.5 IEC Safety Limiting Values
      6. 7.3.6 Regulatory Information
      7. 7.3.7 Isolation Amplifier
      8. 7.3.8 Analog Input
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Motor Control
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Isolated Voltage Measurement
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档 
    2. 11.2 相关链接
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

Over the operating ambient temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Supply voltage, VDD1 to GND1 or VDD2 to GND2 –0.5 6 V
Analog input voltage at VINP, VINN GND1 – 0.5 VDD1 + 0.5 V
Input current to any pin except supply pins –10 10 mA
Maximum junction temperature, TJ Max 150 °C
Storage Temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM) JEDEC standard 22, test method A114-C.01(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
TA Operating ambient temperature range –40 105 °C
VDD1 High-side power supply 4.5 5 5.5 V
VDD2 Low-side power supply 2.7 5 5.5 V

Thermal Information

THERMAL METRIC(1) AMC1200, AMC1200B UNIT
DUB (SOP) DWV (SOIC)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 75.1 102.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 61.6 49.8 °C/W
RθJB Junction-to-board thermal resistance 39.8 56.6 °C/W
ψJT Junction-to-top characterization parameter 27.2 16 °C/W
ψJB Junction-to-board characterization parameter 39.4 55.2 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics

All minimum/maximum specifications at TA = –40°C to 105°C and within the specified voltage range, unless otherwise noted. Typical values are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT
Maximum input voltage before clipping VINP – VINN ±320 mV
Differential input voltage VINP – VINN –250 250 mV
VCM Common mode operating range –0.16 VDD1 V
VOS Input offset voltage –1.5 ±0.2 1.5 mV
TCVOS Input offset thermal drift –10 ±1.5 10 µV/K
CMRR Common mode rejection ratio VIN from 0 V to 5 V at 0 Hz 108 dB
VIN from 0 V to 5 V at 50 kHz 95 dB
CIN Input capacitance to GND1 VINP or VINN 3 pF
CIND Differential input capacitance 3.6 pF
RIN Differential input resistance 28
Small-signal bandwidth 60 100 kHz
OUTPUT
Nominal gain 8
GERR Gain error Initial, at TA = 25°C –0.5% ±0.05% 0.5%
–1% ±0.05% 1%
TCGERR Gain error thermal drift ±56 ppm/K
Nonlinearity 4.5 V ≤ VDD2 ≤ 5.5 V –0.075% ±0.015% 0.075%
2.7 V ≤ VDD2 ≤ 3.6 V –0.1% ±0.023% 0.1%
Nonlinearity thermal drift 2.4 ppm/K
Output noise VINP = VINN = 0 V 3.1 mVRMS
PSRR Power-supply rejection ratio vs VDD1, 10-kHz ripple 80 dB
vs VDD2, 10-kHz ripple 61 dB
Rise/fall time 0.5-V step, 10% to 90% 3.66 6.6 µs
VIN to VOUT signal delay 0.5-V step, 50% to 10%, unfiltered output 1.6 3.3 µs
0.5-V step, 50% to 50%, unfiltered output 3.15 5.6 µs
0.5-V step, 50% to 90%, unfiltered output 5.26 9.9 µs
CMTI Common mode transient immunity VCM = 1 kV 10 15 kV/µs
Output common mode voltage 2.7 V ≤ VDD2 ≤ 3.6 V 1.15 1.29 1.45 V
4.5 V ≤ VDD2 ≤ 5.5 V 2.4 2.55 2.7 V
Short circuit current 20 mA
ROUT Output resistance 2.5 Ω
POWER SUPPLY
VDD1 High-side supply voltage 4.5 5 5.5 V
VDD2 Low-side supply voltage 2.7 5 5.5 V
IDD1 High-side supply current 5.4 8 mA
IDD2 Low-side supply current 2.7 V < VDD2 < 3.6 V 3.8 6 mA
4.5 V < VDD2 < 5.5 V 4.4 7 mA
PDD1 High-side power dissipation 27 44 mW
PDD2 Low-side power dissipation 2.7 V < VDD2 < 3.6 V 11.4 21.6 mW
4.5 V < VDD2 < 5.5 V 22 38.5 mW

Typical Characteristics

At VDD1 = VDD2 = 5 V, VINP = –250 mV to 250 mV, and VINN = 0 V, unless otherwise noted.
AMC1200 AMC1200B tc_offset-vdd1_bas542.png
Figure 1. Input Offset vs High-Side Supply Voltage
AMC1200 AMC1200B tc_offset-vdd2_45v_bas542.png
Figure 3. Input Offset vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_cmrr-frq_bas542.png
Figure 5. Common Mode Rejection Ratio vs Input Frequency
AMC1200 AMC1200B tc_bw-tmp_bas542.png
Figure 7. Input Bandwidth vs Temperature
AMC1200 AMC1200B tc_gain-vdd2_27v_bas542.png
Figure 9. Gain Error vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_gain-tmp_bas542.png
Figure 11. Gain Error vs Temperature
AMC1200 AMC1200B tc_phase-frq_bas542.png
Figure 13. Output Phase vs Input Frequency
AMC1200 AMC1200B tc_vout-vin_27v_bas542.png
Figure 15. Output Voltage vs Input Voltage
AMC1200 AMC1200B tc_nonlinearity-vdd2_27v_bas542.png
Figure 17. Nonlinearity vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_nonlinearity-vin_bas542.png
Figure 19. Nonlinearity vs Input Voltage
AMC1200 AMC1200B tc_noise-frq_bas542.png
Figure 21. Output Noise Density vs Frequency
AMC1200 AMC1200B tc_rise_fall-tmp_bas542.png
Figure 23. Output Rise and Fall Time vs Temperature
AMC1200 AMC1200B tc_delay-tmp_bas542.png
Figure 25. Output Signal Delay Time vs Temperature
AMC1200 AMC1200B tc_vcm-tmp_bas542.png
Figure 27. Output Common Mode Voltage vs Temperature
AMC1200 AMC1200B tc_ivdd2-vdd2_bas542.png
Figure 29. Low-Side Supply Current vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_offset-vdd2_27v_bas542.png
Figure 2. Input Offset vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_offset-tmp_bas542.png
Figure 4. Input Offset vs Temperature
AMC1200 AMC1200B tc_iin-vin_bas542.png
Figure 6. Input Current vs Input Voltage
AMC1200 AMC1200B tc_gain-vdd1_bas542.png
Figure 8. Gain Error vs High-Side Supply Voltage
AMC1200 AMC1200B tc_gain-vdd2_45v_bas542.png
Figure 10. Gain Error vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_gain-frq_bas542.png
Figure 12. Normalized Gain vs Input Frequency
AMC1200 AMC1200B tc_vout-vin_bas542.png
Figure 14. Output Voltage vs Input Voltage
AMC1200 AMC1200B tc_nonlinearity-vdd1_bas542.png
Figure 16. Nonlinearity vs High-Side Supply Voltage
AMC1200 AMC1200B tc_nonlinearity-vdd2_45v_bas542.png
Figure 18. Nonlinearity vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_nonlinearity-tmp_bas542.png
Figure 20. Nonlinearity vs Temperature
AMC1200 AMC1200B tc_psrr-frq_bas542.png
Figure 22. Power-Supply Rejection Ratio vs Ripple Frequency
AMC1200 AMC1200B tc_step_response_bas542.gif
Figure 24. Full-Scale Step Response
AMC1200 AMC1200B tc_vcm-vdd2_bas542.png
Figure 26. Output Common Mode Voltage vs Low-Side Supply Voltage
AMC1200 AMC1200B tc_idd-vdd_bas542.png
Figure 28. Supply Current vs Supply Voltage
AMC1200 AMC1200B tc_idd-tmp_bas542.png
Figure 30. Supply Current vs Temperature