ZHCSR05A May   2023  – September 2023 AMC130M03

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 引脚配置和功能
  7. 规格
    1. 6.1  绝对最大额定值
    2. 6.2  ESD 等级
    3. 6.3  建议运行条件
    4. 6.4  热性能信息
    5. 6.5  绝缘规格
    6. 6.6  安全相关认证
    7. 6.7  安全限值
    8. 6.8  电气特性
    9. 6.9  时序要求
    10. 6.10 开关特性
    11. 6.11 时序图
    12. 6.12 典型特性
  8. 参数测量信息
    1. 7.1 噪声测量
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
    3. 8.3 特性说明
      1. 8.3.1  隔离式直流/直流转换器
        1. 8.3.1.1 直流/直流转换器故障检测
      2. 8.3.2  高侧电流驱动能力
      3. 8.3.3  隔离通道信号传输
      4. 8.3.4  输入 ESD 保护电路
      5. 8.3.5  输入多路复用器
      6. 8.3.6  可编程增益放大器 (PGA)
      7. 8.3.7  电压基准
      8. 8.3.8  内部测试信号
      9. 8.3.9  时钟和功耗模式
      10. 8.3.10 ΔΣ 调制器
      11. 8.3.11 数字滤波器
        1. 8.3.11.1 数字滤波器实现
          1. 8.3.11.1.1 快速稳定滤波器
          2. 8.3.11.1.2 SINC3 和 SINC3 + SINC1 滤波器
        2. 8.3.11.2 数字滤波器特性
      12. 8.3.12 通道相位校准
      13. 8.3.13 校准寄存器
      14. 8.3.14 寄存器映射 CRC
      15. 8.3.15 温度传感器
        1. 8.3.15.1 内部温度传感器
        2. 8.3.15.2 外部温度传感器
        3. 8.3.15.3 针对温度传感器运行的时钟选择
      16. 8.3.16 通用数字输出 (GPO)
    4. 8.4 器件功能模式
      1. 8.4.1 上电和复位
        1. 8.4.1.1 上电复位
        2. 8.4.1.2 SYNC/RESET 引脚
        3. 8.4.1.3 RESET 命令
      2. 8.4.2 上电后的启动行为
      3. 8.4.3 引脚复位或 RESET 命令后的启动行为
      4. 8.4.4 在 CLKIN 中暂停后的启动行为
      5. 8.4.5 同步
      6. 8.4.6 转换模式
        1. 8.4.6.1 连续转换模式
        2. 8.4.6.2 全局斩波模式
      7. 8.4.7 电源模式
      8. 8.4.8 待机模式
    5. 8.5 编程
      1. 8.5.1 串行接口
        1. 8.5.1.1  片选 (CS)
        2. 8.5.1.2  串行数据时钟 (SCLK)
        3. 8.5.1.3  串行数据输入 (DIN)
        4. 8.5.1.4  串行数据输出 (DOUT)
        5. 8.5.1.5  数据就绪 (DRDY)
        6. 8.5.1.6  转换同步或系统复位 (SYNC/RESET)
        7. 8.5.1.7  SPI 通信帧
        8. 8.5.1.8  SPI 通信字
        9. 8.5.1.9  短 SPI 帧
        10. 8.5.1.10 通信循环冗余校验 (CRC)
        11. 8.5.1.11 SPI 超时
      2. 8.5.2 ADC 转换数据格式
      3. 8.5.3 命令
        1. 8.5.3.1 NULL (0000 0000 0000 0000)
        2. 8.5.3.2 RESET (0000 0000 0001 0001)
        3. 8.5.3.3 STANDBY (0000 0000 0010 0010)
        4. 8.5.3.4 WAKEUP (0000 0000 0011 0011)
        5. 8.5.3.5 LOCK (0000 0101 0101 0101)
        6. 8.5.3.6 UNLOCK (0000 0110 0101 0101)
        7. 8.5.3.7 RREG (101a aaaa annn nnnn)
          1. 8.5.3.7.1 读取单个寄存器
          2. 8.5.3.7.2 读取多个寄存器
        8. 8.5.3.8 WREG (011a aaaa annn nnnn)
      4. 8.5.4 ADC 输出缓冲器和 FIFO 缓冲器
      5. 8.5.5 第一次或数据收集暂停后收集数据
    6. 8.6 AMC130M03 寄存器
  10. 应用和实现
    1. 9.1 应用信息
      1. 9.1.1 未使用的输入和输出
      2. 9.1.2 抗混叠
      3. 9.1.3 最小接口连接
      4. 9.1.4 多器件配置
      5. 9.1.5 Calibration
      6. 9.1.6 疑难解答
    2. 9.2 典型应用
      1. 9.2.1 设计要求
      2. 9.2.2 详细设计过程
        1. 9.2.2.1 电压测量
        2. 9.2.2.2 分流测量
        3. 9.2.2.3 温度测量
      3. 9.2.3 应用曲线
    3. 9.3 电源相关建议
    4. 9.4 布局
      1. 9.4.1 布局指南
      2. 9.4.2 布局示例
  11. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

典型应用

本节介绍了使用 AMC130M03 的典型三相电能测量前端。该 ADC 对电阻电流传感器(分流器)和分压器的输出进行采样,以测量主交流电源各分支的电流和电压。该设计在宽输入电流范围 (0.05A–100A) 内能达到很高的精度,在必要时还支持高采样频率,以实现独立谐波分析等高级电能质量功能。与集成片上系统 (SoC) 和应用特定的专用米6体育平台手机版_好二三四相比,通过使用 AMC130M03 对每相电压和电流进行采样,可以让设计人员更加灵活地选择计量微控制器 (MCU)。

图 9-4 展示了三相电能测量设计的前端。在此设计中,每相一个 AMC130M03 测量相应相位的电流和电压,从而提供相间电隔离。这种隔离非常重要,因为在典型情况下,一个相位上的电压电平可能为 220V,另一个相位上的电压电平可能为 –220V。如果多个相位使用一个 ADC,则可能会在两个相邻 ADC 输入之间出现大约 440V 的电压差,从而可能损坏器件。

该设计还包括第四个 ADC,用于监控中性线中的电流。假设计量前端的系统接地连接到中性线,则该 ADC 可以是 ADS131M02 等非隔离器件。这第四个器件是可选的,通常在需要进行篡改检测的情况下使用。

为了简单起见,图 9-4 中未显示 RC 抗混叠滤波器,但建议将其用于所有通道。

微控制器使用 SPI 端口与个 ADC 器件通信,并在相应的 CLKIN 引脚上为所有 ADC 器件提供时钟。个微控制器 I/O 引脚(CS_A、CS_B、CS_C 和 CS_D)生成 SPI CS 信号。SCLK、DIN 和 DOUT 连接在所有 ADC 器件之间共享。为了简化图示,这里未详细显示这些连接。

GUID-20230907-SS0I-VXMG-6RXX-BJJN8CCCQ5JM-low.svg 图 9-4 使用以下器件的三相计量设计前端: AMC130M03