ZHCSQM2 May   2022 AMC1333M10

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagrams
    12. 6.12 Insulation Characteristics Curves
    13. 6.13 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Modulator
      3. 7.3.3 Isolation Channel Signal Transmission
      4. 7.3.4 Digital Output
        1. 7.3.4.1 Output Behavior in Case of a Full-Scale Input
        2. 7.3.4.2 Output Behavior in Case of a Missing High-Side Supply
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Filter Design
        2. 8.2.2.2 Bitstream Filtering
      3. 8.2.3 Application Curve
    3. 8.3 What to Do and What Not to Do
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 接收文档更新通知
    3. 11.3 支持资源
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Typical Application

Isolated modulators are widely used for voltage measurements in high-voltage applications that must be isolated from a low-voltage domain. Typical applications are AC line voltage measurements, either line-to-neutral or line-to-line in grid-connected equipment.

Figure 8-1 illustrates a simplified schematic of an AC motor drive application that uses three AMC1333M10 devices to measure the AC line voltage on each phase of a three-phase system. The AC line voltage is divided down to an approximate ±1-V level across the bottom resistor (RSNS) of a high-impedance resistive divider that is sensed by the AMC1333M10. The digital output of the AMC1333M10 is galvanically isolated from the input and processed by a digital sigma-delta filter module (SDFM) inside the TMS320F28x7x microcontroller on the low-voltage side of the system. A common high-side power supply (AVDD) for all three AMC1333M10 devices is generated from the low-side supply (DVDD) of the system by an isolated DC/DC converter circuit. A low-cost solution is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage ratings.

The high-impedance input, high input voltage range, and the high common-mode transient immunity (CMTI) of the AMC1333M10 ensure reliable and accurate operation even in high-noise environments.

Figure 8-1 Using the AMC1333M10 for AC Line-Voltage Sensing in an AC Motor Drive Application