SLUSA49C April   2010  – June 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Battery Current Regulation
      3. 8.3.3  Input Adapter Current Regulation
      4. 8.3.4  Precharge
      5. 8.3.5  Charge Termination, Recharge, and Safety Timer
      6. 8.3.6  Power Up
      7. 8.3.7  Enable and Disable Charging
      8. 8.3.8  System Power Selector
      9. 8.3.9  Automatic Internal Soft-Start Charger Current
      10. 8.3.10 Converter Operation
      11. 8.3.11 Synchronous and Nonsynchronous Operation
      12. 8.3.12 Cycle-by-Cycle Charge Undercurrent Protection
      13. 8.3.13 Input Overvoltage Protection (ACOV)
      14. 8.3.14 Input Undervoltage Lockout (UVLO)
      15. 8.3.15 Battery Overvoltage Protection
      16. 8.3.16 Cycle-by-Cycle Charge Overcurrent Protection
      17. 8.3.17 Thermal Shutdown Protection
      18. 8.3.18 Temperature Qualification and JEITA Guideline
      19. 8.3.19 Timer Fault Recovery
      20. 8.3.20 PG Output
      21. 8.3.21 CE (Charge Enable)
      22. 8.3.22 Charge Status Outputs
      23. 8.3.23 Battery Detection
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFET Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)(2)(3)
MIN MAX UNIT
Voltage VCC, ACP, ACN, SRP, SRN, BATDRV, ACDRV, CE, STAT1, STAT2, PG –0.3 33 V
PH –2 36
VFB –0.3 16
REGN, LODRV, ACSET, TS, TTC –0.3 7
BTST, HIDRV with respect to GND –0.3 39
VREF, ISET1, ISET2 –0.3 3.6
Maximum difference voltage ACP–ACN, SRP–SRN –0.5 0.5 V
TJ Junction temperature –40 155 °C
Tstg Storage temperature –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are with respect to GND if not specified. Currents are positive into, negative out of the specified terminal. Consult the Packaging section of the data sheet for thermal limitations and considerations of packages.
(3) Must have a series resistor between battery pack and VFB if battery-pack voltage is expected to be greater than 16 V. Usually the resistor-divider top resistor takes care of this.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
Voltage range VCC, ACP, ACN, SRP, SRN, BATDRV, ACDRV, CE, STAT1, STAT2, PG –0.3 28 V
PH –2 30
VFB –0.3 14
REGN, LODRV, ACSET, TS, TTC –0.3 6.5
BTST, HIDRV with respect to GND –0.3 34
ISET1, ISET2 –0.3 3.3
VREF 0 3.3
Maximum difference voltage ACP–ACN, SRP–SRN –0.2 0.2 V
TJ Junction temperature 0 125 °C

7.4 Thermal Information

THERMAL METRIC(1) bq24616 UNIT
RGE [VQFN]
24 PINS
RθJA Junction-to-ambient thermal resistance 43 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 54.3 °C/W
RθJB Junction-to-board thermal resistance 20 °C/W
ψJT Junction-to-top characterization parameter 0.6 °C/W
ψJB Junction-to-board characterization parameter 19 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

5 V ≤ VVCC ≤ 28 V, 0°C < TJ < 125°C, typical values are at TA = 25°C, with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPERATING CONDITIONS
VVCC_OP VCC input voltage operating range 5 28 V
QUIESCENT CURRENTS
IBAT Total battery discharge current (sum of currents into VCC, BTST, PH, ACP, ACN, SRP, SRN, VFB), VFB ≤ VFB_REG VVCC < VSRN, VVCC > VUVLO (SLEEP) 15 μA
Battery discharge current (sum of currents into BTST, PH, SRP, SRN, VFB), VFB ≤ VFB_REG VVCC > VSRN, VVCC > VUVLO CE = LOW 5 µA
VVCC > VSRN, VVCC > VVCCLOW CE = HIGH, charge done 5 µA
IAC Adapter supply current (current into VCC,ACP,ACN pin) VVCC > VSRN, VVCC > VUVLO CE = LOW (IC quiescent current) 1 1.5 mA
VVCC > VSRN, VVCC > VVCCLOW, CE = HIGH, charge done 2 5
VVCC > VSRN, VVCC > VVCCLOW, CE = HIGH, charging, Qg_total = 20 nC 25
CHARGE VOLTAGE REGULATION
VFB_REG Feedback regulation voltage VT3 < VTS < VT1 2.1 V
VT4 < VTS < VT3 2.05
VT5 < VTS < VT4 2.025
Charge voltage regulation accuracy TJ = 0 to 85°C –0.5% –0.5%
TJ = –40 to 125°C –0.7% –0.7%
IVFB Leakage current into VFB pin VFB = 2.1 V, 2.05 V, 2.025 V 100 nA
CURRENT REGULATION – FAST-CHARGE
VISET1 ISET1 voltage range 2 V
VIREG_CHG SRP-SRN current-sense voltage range VIREG_CHG = VSRP – VSRN 100 mV
KISET1 Charge current set factor (amps of charge current per volt on ISET1 pin) RSENSE = 10 mΩ 5 A/V
Charge current regulation accuracy VIREG_CHG = 40 mV –3% 3%
VIREG_CHG = 20 mV –4% 4%
VIREG_CHG = 5 mV –25% 25%
VIREG_CHG = 1.5 mV (VSRN > 3.1 V) –40% 40%
IISET1 Leakage current into ISET1 pin VISET1 = 2 V 100 nA
CURRENT REGULATION – PRECHARGE
VISET2 ISET2 voltage range 2 V
KISET2 Precharge current-set factor (amps of precharge current per volt on ISET2 pin) RSENSE = 10 mΩ 1 A/V
Precharge current-regulation accuracy VIREG_PRECH = 20 mV –4% 4%
VIREG_PRECH = 5 mV –25% 25%
VIREG_PRECH = 1.5 mV (VSRN < 3.1 V) –55% 55%
IISET2 Leakage current into ISET2 pin VISET2 = 2 V 100 nA
CHARGE TERMINATION
KTERM Termination current-set factor (amps of termination current per volt on ISET2 pin) RSENSE = 10 mΩ 1 A/V
Termination-current accuracy VITERM = 20 mV –4% 4%
VITERM = 5 mV –25% 25%
VITERM = 1.5 mV –45% 45%
Deglitch time for termination (both edge) 100 ms
tQUAL Termination qualification time VBAT> VRECH and ICHG< ITERM 250 ms
IQUAL Termination qualification current Discharge current once termination is detected 2 mA
INPUT CURRENT REGULATION
VACSET ACSET voltage range 2 V
VIREG_DPM ACP-ACN current sense voltage range VIREG_DPM = VACP – VACN 100 mV
KACSET Input current set factor (amps of input current per volt on ACSET pin) RSENSE = 10 mΩ 5 A/V
IACSET Input current regulation accuracy leakage current in to ACSET pin VIREG_DPM = 40 mV –3% 3%
VIREG_DPM = 20 mV –4% 4%
VIREG_DPM = 5 mV –25% 25%
IISET1 Leakage current in to ACSET pin VACSET = 2 V 100 nA
INPUT UNDERVOLTAGE LOCKOUT COMPARATOR (UVLO)
VUVLO AC undervoltage rising threshold Measure on VCC 3.65 3.85 4 V
VUVLO_HYS AC undervoltage hysteresis, falling 350 mV
VCC LOWV COMPARATOR
Falling threshold, disable charge Measure on VCC 4.1 V
Rising threshold, resume charge 4.35 4.5 V
SLEEP COMPARATOR (REVERSE DISCHARGING PROTECTION)
VSLEEP _FALL SLEEP falling threshold VVCC – VSRN to enter SLEEP 40 100 150 mV
VSLEEP_HYS SLEEP hysteresis 500 mV
SLEEP rising delay VCC falling below SRN, Delay to turn off ACFET 1 μs
SLEEP falling delay VCC rising above SRN, Delay to turn on ACFET 30 ms
SLEEP rising shutdown deglitch VCC falling below SRN, Delay to enter SLEEP mode 100 ms
SLEEP falling powerup deglitch VCC rising above SRN, Delay to exit SLEEP mode 30 ms
ACN / SRN COMPARATOR
VACN-SRN_FALL ACN to SRN falling threshold VACN – VSRN to turn on BATFET 100 200 310 mV
VACN-SRN_HYS ACN to SRN rising hysteresis 100 mV
ACN to SRN rising deglitch VACN – VSRN > VACN-SRN_RISE 2 ms
ACN to SRN falling deglitch VACN – VSRN < VACN-SRN_FALL 50 μs
BAT LOWV COMPARATOR
VLOWV Precharge to fast-charge transition (LOWV threshold) Measured on VFB pin, rising 1.534 1.55 1.566 V
VLOWV_HYS LOWV hysteresis 100 mV
LOWV rising deglitch VFB falling below VLOWV 25 ms
LOWV falling deglitch VFB rising above VLOWV + VLOWV_HYS 25 ms
RECHARGE COMPARATOR
VRECHG Recharge threshold (with-respect-to VREG) Measured on VFB pin, falling 35 50 65 mV
Recharge rising deglitch VFB decreasing below VRECHG 10 ms
Recharge falling deglitch VFB decreasing above VRECHG 10 ms
BAT OVERVOLTAGE COMPARATOR
VOV_RISE Overvoltage rising threshold As percentage of VFB ,T1 – T5 104%
VOV_FALL Overvoltage falling threshold As percentage of VFB,T1 – T5 102%
INPUT OVERVOLTAGE COMPARATOR (ACOV)
VACOV AC overvoltage rising threshold on VCC 31.04 32 32.96 V
VACOV_HYS AC overvoltage falling hysteresis 1 V
AC overvoltage deglitch (both edges) Delay to changing the STAT pins 1 ms
AC overvoltage rising deglitch Delay to turn off ACFET, disable charge 1 ms
AC overvoltage falling deglitch Delay to turn on ACFET, resume charge 20 ms
THERMAL SHUTDOWN COMPARATOR
TSHUT Thermal shutdown rising temperature Temperature increasing 145 °C
TSHUT_HYS Thermal shutdown hysteresis 15 °C
Thermal shutdown rising deglitch Temperature increasing 100 μs
Thermal shutdown falling deglitch Temperature decreasing 10 ms
THERMISTOR COMPARATOR
VT1 T1 (0 °C) threshold, charge suspended below this temperature VTS rising, as percentage of VVREF 70.2% 70.8% 71.4%
VT1-HYS Charge back to ICHARGE/2 and VFB = 2.1 V above this temperature. Hysteresis, VTS falling 0.6%
VT2 T2 (10 °C) threshold, charge back to ICHARGE/2 and VFB = 2.1 V below this temperature. VTS rising, as percentage of VVREF 68.0% 68.6% 69.2%
VT2-HYS Charge back to ICHARGE and VFB = 2.1 V above this temperature. Hysteresis, VTS falling 0.8%
VT3 T3 (45 °C) threshold, charge back to ICHARGE and VFB = 2.05 V above this temperature. VTS falling, as percentage of VVREF 55.5% 56.1% 56.7%
VT3-HYS Charge back to ICHARGE and VFB = 2.1 V below this temperature. Hysteresis, VTS rising 0.8%
VT4 T4 (50 °C) threshold, charge back to ICHARGE and VFB = 2.025 V above this temperature. VTS falling, as percentage of VVREF 53.2% 53.7% 54.2%
VT4-HYS Charge back to ICHARGE and VFB = 2.05 V below this temperature. Hysteresis, VTS rising 0.8%
VT5 T5 (60 °C) threshold, charge suspended above this temperature. VTS falling, as percentage of VVREF 47.6% 48.1% 48.6%
VT5-HYS Charge back to ICHARGE and VFB = 2.025 V below this temperature. Hysteresis, VTS rising 1.2%
Deglitch time for temperature out-of-valid-charge-range detection VTS < VT5 or VTS > VT1 400 ms
Deglitch time for temperature in-valid-range detection VTS > VT5 + VT5_HYS or VTS < VT1 - VT1_HYS 20 ms
Deglitch time for temperature detection above/below T2, T3, T4 threshold 25 ms
Charge current when VTS between VT1 and VT2 range ICHARGE/2
CHARGE OVERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VOC Charge overcurrent falling threshold Current rising in nonsynchronous mode, measure on V(SRP-SRN), VSRP < 2 V 45.5 mV
Current rising, as percentage of V(IREG_CHG), in synchronous mode, VSRP > 2.2V 160%
Charge overcurrent threshold floor Minimum OCP threshold in synchronous mode, measure on V(SRP-SRN), VSRP > 2.2 V 50 mV
Charge overcurrent threshold ceiling Maximum OCP threshold in synchronous mode, measure on V(SRP-SRN), VSRP > 2.2 V 180 mV
CHARGE UNDERCURRENT COMPARATOR (CYCLE-BY-CYCLE)
VISYNSET Charge undercurrent falling threshold Switch from SYNCH to NON-SYNCH, VSRP > 2.2 V 1 5 9 mV
BATTERY SHORTED COMPARATOR (BATSHORT)
VBATSHT BAT short falling threshold, forced nonsynchronous mode VSRP falling 2 V
VBATSHT_HYS BAT short rising hysteresis 200 mV
VBATSHT_DEG Deglitch on both edges 1 μs
LOW CHARGE CURRENT COMPARATOR
VLC Low charge current (average) falling threshold to force into nonsynchronous mode Measure on V(SRP-SRN) 1.25 mV
VLC_HYS Low charge current, rising hysteresis 1.25 mV
VLC_DEG Deglitch on both edge 1 μs
VREF REGULATOR
VVREF_REG VREF regulator voltage VVCC > VUVLO, (0–35 mA load) 3.267 3.3 3.333 V
IVREF_LIM VREF current limit VVREF = 0 V, VVCC > VUVLO 35 mA
REGN REGULATOR
VREGN_REG REGN regulator voltage VVCC > 10 V, CE = HIGH, (0–40 mA load) 5.7 6 6.3 V
IREGN_LIM REGN current limit VREGN = 0 V, VVCC > VUVLO, CE = HIGH 40 mA
TTC INPUT AND SAFETY TIMER
TPRECHG Precharge safety timer range(1) Precharge time before fault occurs 1440 1800 2160 s
TCHARGE Fast-charge safety-timer range, with ±10% accuracy(1) Tchg = CTTC × KTTC 1 10 h
Fast-charge timer accuracy(1) 0.01 μF ≤ CTTC ≤ 0.11 μF –10% 10%
KTTC Timer multiplier 5.6 min/nF
TTC low threshold VTTC below this threshold disables the safety timer and termination 0.4 V
TTC oscillator high threshold 1.5 V
TTC oscillator low threshold 1 V
TTC source/sink current 45 50 55 μA
BATTERY SWITCH (BATFET) DRIVER
RDS_BAT_OFF BATFET turnoff resistance VACN > 5 V 150 Ω
RDS_BAT_ON BATFET turnon resistance VACN > 5 V 20
VBATDRV_REG BATFET drive voltage VBATDRV_REG = VACN – VBATDRV when VACN > 5 V and BATFET is on 4.2 7 V
AC SWITCH (ACFET) DRIVER
RDS_AC_OFF ACFET turnoff resistance VVCC > 5 V 30 Ω
RDS_AC_ON ACFET turnon resistance VVCC > 5 V 20
VACDRV_REG ACFET drive voltage VACDRV_REG = VVCC – VACDRV when VVCC > 5 V and ACFET is on 4.2 7 V
AC / BAT MOSFET DRIVERS TIMING
Driver dead time Dead time when switching between AC and BAT 10 μs
BATTERY DETECTION
tWAKE Wake time Maximum time charge is enabled 500 ms
IWAKE Wake current RSENSE = 10 mΩ 50 125 200 mA
tDISCHARGE Discharge time Maximum time discharge current is applied 1 sec
IDISCHARGE Discharge current 8 mA
IFAULT Fault current after a time-out fault 2 mA
VWAKE Wake threshold (with respect to VREG) Voltage on VFB to detect battery absent during wake 50 mV
VDISCH Discharge threshold Voltage on VFB to detect battery absent during discharge 1.55 V
PWM HIGH-SIDE DRIVER (HIDRV)
RDS_HI_ON High-side driver (HSD) turnon resistance VBTST – VPH = 5.5 V 3.3 6 Ω
RDS_HI_OFF HSD turnoff resistance VBTST – VPH = 5.5 V 1 1.3 Ω
VBTST_REFRESH Bootstrap refresh comparator threshold voltage VBTST – VPH when low-side refresh pulse is requested 4 4.2 V
PWM LOW-SIDE DRIVER (LODRV)
RDS_LO_ON Low-side driver (LSD) turnon resistance 4.1 7 Ω
RDS_LO_OFF LSD turnoff resistance 1 1.4 Ω
PWM DRIVER TIMING
Driver dead time Dead time when switching between LSD and HSD, no load at LSD and HSD 30 ns
PWM OSCILLATOR
VRAMP_HEIGHT PWM ramp height As percentage of VCC 7 %
PWM switching frequency 510 600 690 kHz
INTERNAL SOFT-START (8 steps to regulation current ICHG)
Soft-start steps 8 step
Soft-start step time 1.6 ms
CHARGER SECTION POWER-UP SEQUENCING
Charge-enable delay after power up Delay from CE = 1 until charger is allowed to turn on 1.5 s
LOGIC IO PIN CHARACTERISTICS (CE, STAT1, STAT2, PG)
VIN_LO CE input low-threshold voltage 0.8 V
VIN_HI CE input high-threshold voltage 2.1
VBIAS_CE CE input bias current V = 3.3 V (CE has internal 1-MΩ pulldown resistor) 6 μA
VOUT_LO STAT1, STAT2, PG output low saturation voltage Sink current = 5 mA 0.5 V
IOUT_HI Leakage current V = 32 V 1.2 µA
(1) Verified by design.

7.6 Typical Characteristics

Table 1. Table of Graphs

FIGURE
VREF, REGN, and PG Power Up (CE = 1) Figure 1
Charge Enable Figure 2
Current Soft-Start (CE = 1) Figure 3
Charge Disable Figure 4
Continuous-Conduction Mode Switching Waveform Figure 5
Cycle-by-Cycle Synchronous to Nonsynchronous Figure 6
Transient System Load (DPM) Figure 7
Battery Insertion Figure 8
Batter- to-Ground Short Protection Figure 9
Battery-to-Ground Short Transition Figure 10
Efficiency vs Output Current Figure 11
bq24616 ref_rgn_lus892.gif
Figure 1. VREF, REGN, and PG Power Up (CE = 1)
bq24616 cur_sfst_lus892.gif
Figure 3. Current Soft-Start (CE = 1)
bq24616 cc_mode_lus892.gif
Figure 5. Continuous-Conduction Mode Switching Waveform
bq24616 trans_sys_lus892.gif
Figure 7. Transient System Load (DPM)
bq24616 short_pro_lus892.gif
Figure 9. Battery-to-GND Short Protection
bq24616 eff_comb_lus892.gif
Figure 11. Efficiency vs Output Current
bq24616 chg_enab_lus892.gif
Figure 2. Charge Enable
bq24616 chg_dis_lus892.gif
Figure 4. Charge Disable
bq24616 cycle_lus892.gif
Figure 6. Cycle-by-Cycle Synchronous to Nonsynchronous
bq24616 ins_batt_lus892.gif
Figure 8. Battery Insertion
bq24616 short_trans_lus892.gif
Figure 10. Battery-to-GND Short Transition