ZHCSSI5B December   2022  – March 2024 BQ25758

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1 绝对最大额定值
    2. 5.2 ESD 等级
    3. 5.3 建议运行条件
    4. 5.4 热性能信息
    5. 5.5 电气特性
    6. 5.6 时序要求
    7. 5.7 典型特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1 器件上电复位
      2. 6.3.2 无输入源时通过电池实现器件上电
      3. 6.3.3 通过输入源实现器件上电
        1. 6.3.3.1 VAC 操作窗口编程(ACUV 和 ACOV)
        2. 6.3.3.2 MODE 引脚配置
        3. 6.3.3.3 REGN 稳压器 (REGN LDO)
        4. 6.3.3.4 无补偿降压/升压转换器运行
          1. 6.3.3.4.1 轻负载运行
        5. 6.3.3.5 开关频率和同步 (FSW_SYNC)
        6. 6.3.3.6 器件高阻态模式
      4. 6.3.4 电源管理
        1. 6.3.4.1 输出电压编程 (VOUT_REG)
        2. 6.3.4.2 输出电流编程(IOUT 引脚和 IOUT_REG)
        3. 6.3.4.3 动态电源管理:输入电压和输入电流调节
          1. 6.3.4.3.1 输入电流调节
            1. 6.3.4.3.1.1 IIN 引脚
          2. 6.3.4.3.2 输入电压调节
        4. 6.3.4.4 旁路模式
      5. 6.3.5 双向功率流和可编程性
      6. 6.3.6 用于监测的集成 16 位 ADC
      7. 6.3.7 状态输出(PG、STAT 和 INT)
        1. 6.3.7.1 电源正常状态指示器 (PG)
        2. 6.3.7.2 主机中断 (INT)
      8. 6.3.8 保护功能
        1. 6.3.8.1 电压和电流监测
          1. 6.3.8.1.1 VAC 过压保护 (VAC_OVP)
          2. 6.3.8.1.2 VAC 欠压保护 (VAC_UVP)
          3. 6.3.8.1.3 反向模式过压保护 (REV_OVP)
          4. 6.3.8.1.4 反向模式欠压保护 (REV_UVP)
          5. 6.3.8.1.5 DRV_SUP 欠压和过压保护 (DRV_OKZ)
          6. 6.3.8.1.6 REGN 欠压保护 (REGN_OKZ)
        2. 6.3.8.2 热关断(TSHUT)
      9. 6.3.9 串行接口
        1. 6.3.9.1 数据有效性
        2. 6.3.9.2 START 和 STOP 条件
        3. 6.3.9.3 字节格式
        4. 6.3.9.4 确认 (ACK) 和否定确认 (NACK)
        5. 6.3.9.5 目标地址和数据方向位
        6. 6.3.9.6 单独写入和读取
        7. 6.3.9.7 多个写入和多个读取
    4. 6.4 器件功能模式
      1. 6.4.1 主机模式和默认模式
      2. 6.4.2 复位寄存器位
    5. 6.5 BQ25758 寄存器
  8. 应用和实施
    1. 7.1 应用信息
    2. 7.2 典型应用
      1. 7.2.1 典型应用(降压/升压配置)
        1. 7.2.1.1 设计要求
        2. 7.2.1.2 详细设计过程
          1. 7.2.1.2.1 ACUV/ACOV 输入电压运行窗口编程
          2. 7.2.1.2.2 开关频率选择
          3. 7.2.1.2.3 电感器选型
          4. 7.2.1.2.4 输入 (VAC) 电容器
          5. 7.2.1.2.5 输出 (VBAT) 电容器
          6. 7.2.1.2.6 检测电阻(RAC_SNS 和 RBAT_SNS)和电流编程
          7. 7.2.1.2.7 转换器快速瞬态响应
        3. 7.2.1.3 应用曲线
      2. 7.2.2 典型应用(仅降压配置)
        1. 7.2.2.1 设计要求
  9. 电源相关建议
  10. 布局
    1. 9.1 布局指南
    2. 9.2 布局示例
  11. 10器件和文档支持
    1. 10.1 器件支持
      1. 10.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 10.2 接收文档更新通知
    3. 10.3 支持资源
    4. 10.4 商标
    5. 10.5 静电放电警告
    6. 10.6 术语表
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
检测电阻(RAC_SNS 和 RBAT_SNS)和电流编程

SRP 和 SRN 之间的电池电流检测电阻固定为 5mΩ;不建议使用不同的值。ACP 和 ACN 之间的输入电流检测电阻通常为 2mΩ,但可以增大以在较低检测电流下实现更高的精度。在 USB-PD EPR 应用中,建议使用 5mΩ 检测电阻以实现步长为 50mA 的可编程性。此外,如果不需要输入电流限制功能,则可以将 ACP 和 ACN 短接在一起。对于这两个检测电阻,建议使用滤波器网络,如典型应用中所示。

对于输入电流和输出电流,可以分别使用 I2C 接口或 IIN 和 IOUT 引脚上的外部编程电阻器对限制进行编程。

表 7-4 检测电阻和电流编程
参数 公式
输入电流硬件限制 未使用 将 IIN 引脚拉至 GND
输入电流软件限制 未使用 REG06 = 0x0640(50A,具有 2mΩ RAC_SNS
输出电流硬件限制 RIOUT = KICHG/8A 对于 8A(具有 5mΩ RBAT_SNS)为 6.25kΩ
输出电流软件限制 ICHG = 5A REG02 = 0x0190 (5A)

默认输入检测电阻 (RAC_SNS) 为 2mΩ,寄存器允许高达 50A 的输入电流限制。如果需要较低的电流,则可以使用较高的电阻器,例如 5mΩ。在这种情况下,IAC_DPM 寄存器值应乘以系数 2/5,以编程正确的电流。例如,如果使用 5mΩ RAC_SNS,并且寄存器被编程为值 0x60,则 RAC_SNS 上的真实最大电流将为:12A * 2/5 = 4.8A。同样,用于设置 IIN 下拉电阻器的 KILIM 参数应乘以系数 2/5。例如,使用 5mΩ RAC_SNS 电阻器,可实现 6A 电流限制,如下所示:RILIM = KILIM * (2/5)/6A = 3.3kΩ。