ZHCSHR0B September   2017  – September 2019 BQ25910

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Device Power-On-Reset (POR)
      2. 7.3.2  Device Power Up from Battery without Input Source
      3. 7.3.3  Device Power Up from Input Source
      4. 7.3.4  Power Up REGN LDO
      5. 7.3.5  Poor Source Qualification
      6. 7.3.6  Converter Power-Up
      7. 7.3.7  Three-Level Buck Converter Theory of Operation
      8. 7.3.8  Host Mode and Default Mode
        1. 7.3.8.1 Host Mode and Default Mode in BQ25910
      9. 7.3.9  Battery Charging Management
        1. 7.3.9.1 Autonomous Charging Cycle
      10. 7.3.10 Master Charger and Parallel Charger Interactions
      11. 7.3.11 Battery Charging Profile
        1. 7.3.11.1 Charging Termination
        2. 7.3.11.2 Differential Battery Voltage Remote Sensing
        3. 7.3.11.3 Charging Safety Timer
    4. 7.4 Device Functional Modes
      1. 7.4.1 Lossless Current Sensing
      2. 7.4.2 Dynamic Power Management
      3. 7.4.3 Interrupt to Host (INT)
      4. 7.4.4 Protections
        1. 7.4.4.1 Voltage and Current Monitoring
          1. 7.4.4.1.1 Input Over-Voltage (VVBUS_OV)
          2. 7.4.4.1.2 Input Under-Voltage (VPOORSRC)
          3. 7.4.4.1.3 Flying Capacitor Over- or Under-Voltage Protection (VCFLY_OVP and VCFLY_UVP)
          4. 7.4.4.1.4 Over Current Protection
        2. 7.4.4.2 Thermal Regulation and Thermal Shutdown
        3. 7.4.4.3 Battery Protection
          1. 7.4.4.3.1 Battery Over-Voltage Protection (BATOVP)
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Data Validity
      3. 7.5.3 START and STOP Conditions
      4. 7.5.4 Byte Format
      5. 7.5.5 Acknowledge (ACK) and Not Acknowledge (NACK)
      6. 7.5.6 Slave Address and Data Direction Bit
      7. 7.5.7 Single Read and Write
      8. 7.5.8 Multi-Read and Multi-Write
    6. 7.6 Register Maps
      1. 7.6.1 I2C Registers
        1. 7.6.1.1  Battery Voltage Regulation Limit Register (Address = 0h) [reset = AAh]
          1. Table 5. REG00 Register Field Descriptions
        2. 7.6.1.2  Charger Current Limit Register (Address = 1h) [reset = 46h]
          1. Table 6. REG01 Register Field Descriptions
        3. 7.6.1.3  Input Voltage Limit Register (Address = 2h) [reset = 04h]
          1. Table 7. REG02 Register Field Descriptions
        4. 7.6.1.4  Input Current Limit Register (Address = 3h) [reset = 13h]
          1. Table 8. REG03 Register Field Descriptions
        5. 7.6.1.5  Reserved Register (Address = 4h) [reset = 03h]
          1. Table 9. REG04 Register Field Descriptions
        6. 7.6.1.6  Charger Control 1 Register (Address = 5h) [reset = 9Dh]
          1. Table 10. REG05 Register Field Descriptions
        7. 7.6.1.7  Charger Control 2 Register (Address = 6h) [reset = 33h]
          1. Table 11. REG06 Register Field Descriptions
        8. 7.6.1.8  INT Status Register (Address = 7h) [reset = X]
          1. Table 12. REG07 Register Field Descriptions
        9. 7.6.1.9  FAULT Status Register (Address = 8h) [reset = X]
          1. Table 13. REG08 Register Field Descriptions
        10. 7.6.1.10 INT Flag Status Register (Address = 9h) [reset = 00h]
          1. Table 14. REG09 Register Field Descriptions
        11. 7.6.1.11 FAULT Flag Register (Address = Ah) [reset = 00h]
          1. Table 15. REG0A Register Field Descriptions
        12. 7.6.1.12 INT Mask Register (Address = Bh) [reset = 00h]
          1. Table 16. REG0h Register Field Descriptions
        13. 7.6.1.13 FAULT Mask Register (Address = Ch) [reset = 00h]
          1. Table 17. REG0C Register Field Descriptions
        14. 7.6.1.14 Part Information Register (Address = Dh) [reset = 0Ah]
          1. Table 18. REG0D Register Field Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 External Passive Recommendation
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Input Capacitor
        4. 8.2.2.4 Flying Capacitor
        5. 8.2.2.5 Output Capacitor
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 第三方米6体育平台手机版_好二三四免责声明
        1. 11.1.1.1 第三方米6体育平台手机版_好二三四免责声明
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 Glossary
  12. 12机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • YFF|36
散热焊盘机械数据 (封装 | 引脚)
订购信息

Pin Configuration and Functions

BQ25910-YFF (I2C controlled)
36-Pin DSBGA
Top View
BQ25910 pin_yff_lvsdu0.gif
Top View = Xray through a soldered down part with A1 starting in upper left hand corner.

Pin Functions

PIN I/O DESCRIPTION
NAME NO.
BATN F4 AI Negative Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible to negative battery terminal
BATP F5 AI Positive Battery Sense Terminal – Kelvin connect via 100-Ω resistor as close as possible to positive battery terminal
CAUX F2 P Auxiliary Capacitor – Bypass CAUX to GND with at least a 4.7-μF, 10-V ceramic capacitor
CDRV+ D1 P Gate Drive Supply Positive Terminal – CDRV is used to generate multilevel gate drive rails.
Connect a 220-nF, 6.3-V ceramic capacitor across CDRV+ and CDRV-.
CDRV– E1 P Gate Drive Supply Negative Terminal – CDRV is used to generate multilevel gate drive rails.
Connect a 220-nF, 6.3-V ceramic capacitor across DRV+ and DRV-.
CFLY+ A3 P Flying Capacitor Positive Terminal – Connect 20-μF, 16-V ceramic capacitor across CFLY+ and CFLY–. Refer to Application and Implementation section for more information on selecting CFLY.
B3
C3
D3
CFLY– A5 P Flying Capacitor Negative Terminal – Connect 20-μF, 16-V ceramic capacitor across CFLY+ and CFLY–. Refer to Application and Implementation section for more information on selecting CFLY.
B5
C5
D5
E5
GND A6 - Ground Return
B6
C6
D6
E6
IND_SNS F6 AI Output Inductor Sense Input – Kelvin connect as close as possible to the output of the switched inductor.
INT E3 DO Open-Drain Interrupt Output – Connect INT to the logic rail via a 10-kΩ resistor. The INT pin sends active low, 256-μs pulse to the host to report charger device status and fault.
PMID A2 P Reverse Blocking MOSFET and QHSA MOSFET Connection – Given the total input capacitance, place 1 μF on VBUS, and the rest on PMID, as close to the device as possible. Typical value: 10-μF, 25-V ceramic capacitor
B2
C2
D2
REGN F3 P Gate Drive Supply – Bias supply for internal MOSFETs driver and device. Bypass REGN to GND with a 4.7-μF, 10-V ceramic capacitor.
SCL F1 DI I2C Interface Open-Drain Clock Line – Connect SCL to the logic rail through a 10-kΩ resistor.
SDA E2 DIO I2C Interface Open-Drain Data Line – Connect SDA to the logic rail through a 10-kΩ resistor.
SW A4 P Inductor Connection – Connect to the switched side of the external inductor (Recommended: 330 nH for up to 9-V applications or 470 nH for up to 12-V applications). Refer to Application and Implementation section for more information on selecting inductor.
B4
C4
D4
E4
VBUS A1 P Input Supply – VBUS is connected to the external DC supply. Bypass VBUS to GND with at least 1-μF, 25-V ceramic capacitor, placed as close to the device as possible.
B1
C1