ZHCSCY4B November   2013  – October 2014

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 简化电路原理图
  5. 修订历史记录
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  Handling Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Thermal Information
    5. 8.5  Supply Current
    6. 8.6  Digital Input and Output DC Characteristics
    7. 8.7  LDO Regulator, Wake-up, and Auto-Shutdown DC Characteristics
    8. 8.8  LDO Regulator, Wake-up, and Auto-shutdown AC Characteristics
    9. 8.9  ADC (Temperature and Cell Measurement) Characteristics
    10. 8.10 Integrating ADC (Coulomb Counter) Characteristics
    11. 8.11 I2C-Compatible Interface Communication Timing Characteristics
    12. 8.12 SHUTDOWN and WAKE-UP Timing
    13. 8.13 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
    5. 9.5 Programming
      1. 9.5.1 Standard Data Commands
      2. 9.5.2 ControlSRP - SRN): 0x00 and 0x01
      3. 9.5.3 Extended Data Commands
      4. 9.5.4 Communications
        1. 9.5.4.1 I2C Interface
        2. 9.5.4.2 I2C Time Out
        3. 9.5.4.3 I2C Command Waiting Time
        4. 9.5.4.4 I2C Clock Stretching
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 BAT Voltage Sense Input
        2. 10.2.2.2 Integrated LDO Capacitor
        3. 10.2.2.3 Sense Resistor Selection
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendation
    1. 11.1 Power Supply Decoupling
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13器件和文档支持
    1. 13.1 文档支持
      1. 13.1.1 相关文档 
    2. 13.2 商标
    3. 13.3 静电放电警告
    4. 13.4 术语表
  14. 14机械封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Pin Configuration and Functions

bq27441_pinout.gif

Pin Functions

PIN TYPE(1) DESCRIPTION
NAME NUMBER
BAT 6 PI, AI LDO regulator input and battery voltage measurement input. Kelvin sense connect to positive battery terminal (PACKP).
BIN 10 DI Battery insertion detection input. If OpConfig[BI_PU_EN] = 1 (default), a logic low on the pin is detected as battery insertion. For a removable pack, the BIN pin can be connected to VSS through a pulldown resistor on the pack, typically the 10-kΩ thermistor; the system board should use a 1.8-MΩ pullup resistor to VDD to ensure the BIN pin is high when a battery is removed. If the battery is embedded in the system, it is recommended to leave [BI_PU_EN] = 1 and use a 10-kΩ pulldown resistor from BIN to VSS. If [BI_PU_EN] = 0, then the host must inform the gauge of battery insertion and removal with the BAT_INSERT and BAT_REMOVE subcommands. A 10-kΩ pulldown resistor should be placed between BIN and VSS, even if this pin is unused.
NOTE: The BIN pin must not be shorted directly to VCC or VSS and any pullup resistor on the BIN pin must be connected only to VDD and not an external voltage rail.
GPOUT 12 DO This open-drain output can be configured to indicate BAT_LOW when the OpConfig[BATLOWEN] bit is set. By default [BATLOWEN] is cleared and this pin performs an interrupt function (SOC_INT) by pulsing for specific events, such as a change in state-of-charge. Signal polarity for these functions is controlled by the [GPIOPOL] configuration bit. This pin should not be left floating, even if unused; therefore, a 10-kΩ pullup resistor is recommended.
NC 4, 9, 11 No internal connection. May be left floating or tied to VSS.
SCL 2 DIO Slave I2C serial bus for communication with system (Master). Open-drain pins. Use with external 10-kΩ pullup resistors (typical) for each pin. If the external pullup resistors will be disconnected from these pins during normal operation, recommend using external 1-MΩ pulldown resistors to VSS at each pin to avoid floating inputs.
SDA 1 DIO
SRN 7 AI Coulomb counter differential inputs expecting an external 10 mΩ, 1% sense resistor in the high-side current path. Kelvin sense connect SRP to the positive battery terminal (PACKP) side of the external sense resistor. Kelvin sense connect SRN to the other side of the external sense resistor, the positive connection to the system (VSYS). See the Simplified Schematic. No calibration is required. The fuel gauge is pre-calibrated for a standard 10 mΩ, 1% sense resistor.
SRP 8 AI
VDD 5 PO 1.8-V regulator output. Decouple with 0.47-μF ceramic capacitor to VSS. This pin is not intended to provide power for other devices in the system.
VSS 3 PI Ground pin
(1) IO = Digital input-output, AI = Analog input, P = Power connection