SLUS900E December   2008  – August 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 IRQ Function
      2. 7.3.2 VBACK Switchover
      3. 7.3.3 Trickle Charge
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 I2C Serial Interface
    6. 7.6 Register Maps
      1. 7.6.1 I2C Read After Backup Mode
      2. 7.6.2 Normal Register Descriptions
        1. 7.6.2.1  SECONDS Register (address = 0x00) [reset = 0XXXXXXb]
        2. 7.6.2.2  MINUTES Register (address = 0x01) [reset = 1XXXXXXb]
        3. 7.6.2.3  CENT_HOURS Register (address = 0x02) [reset = XXXXXXXXb]
        4. 7.6.2.4  DAY Register (address = 0x03) [reset = 00000XXXb]
        5. 7.6.2.5  DATE Register (address = 0x04) [reset = 00XXXXXXb]
        6. 7.6.2.6  MONTH Register (address = 0x05) [reset = 000XXXXXb]
        7. 7.6.2.7  YEARS Register (address = 0x06) [reset = XXXXXXXXb]
        8. 7.6.2.8  CAL_CFG1 Register (address = 0x07) [reset = 10000000b]
        9. 7.6.2.9  TCH2 Register (address = 0x08) [reset = 10010000b]
        10. 7.6.2.10 CFG2 Register (address = 0x09) [reset = 10101010b]
      3. 7.6.3 Special Function Registers
        1. 7.6.3.1 SF KEY 1 Register (address = 0x20) [reset = 00000000b]
        2. 7.6.3.2 SF KEY 2 Register (address = 0x21) [reset = 00000000b]
        3. 7.6.3.3 SFR Register (address = 0x22) [reset = 00000000b]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Reading From a Register
        2. 8.2.2.2 Leap Year Compensation
        3. 8.2.2.3 Utilizing the Backup Supply
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage, VIN VCC to GND –0.3 4 V
All other pins to GND –0.3 VCC + 0.3 V
Operating junction temperature, TJ –40 150 °C
Storage temperature, Tstg –60 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VCC Supply voltage, VCC to GND 3 3.6 V
TA Operating free-air temperature –40 85 °C
fo Crystal resonant frequency 32.768 kHz
RS Crystal series resistance 70
CL Crystal load capacitance 10.8 12 13.2 pF

6.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)
THERMAL METRIC(1) bq32000 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 114.8 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 59.1 °C/W
RθJB Junction-to-board thermal resistance 55.5 °C/W
ψJT Junction-to-top characterization parameter 11.9 °C/W
ψJT Junction-to-board characterization parameter 55 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY
ICC VCC supply current 100 μA
VBACK Backup supply voltage Operating 1.4 VCC V
Switchover 2.0 VCC
IBACK Backup supply current VCC needs a pulse (1), VBACK = 3 V, Oscillator on, TA = 25°C 1.2 1.5 μA
LOGIC LEVEL INPUTS
VIL Input low voltage 0.3 VCC V
VIH Input high voltage 0.7 VCC V
IIN Input current 0 V ≤ VIN ≤ VCC -1 1 μA
LOGIC LEVEL OUTPUTS
VOL Output low voltage IOL = 3 mA 0.4 V
IL Leakage current -1 1 μA
REAL-TIME CLOCK CHARACTERISTICS
Pre-calibration accuracy VCC = 3.3 V, VBACK = 3 V, Oscillator on, TA = 25°C ±35(2) ppm
(1) The currents measured after issuing a pulse on VCC. The pulse amplitude 0-VCC; pulse width min 1 ms.
(2) Typical accuracy is measured using reference board design and KDS DMX-26S surface-mount 32.768-kHz crystal. Variation in board design and crystal section results in different typical accuracy.

6.6 I2C Timing Requirements

STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
fscl I2C clock frequency 0 100 0 400 kHz
tsch I2C clock high time 4 0.6 μs
tscl I2C clock low time 4.7 1.3 μs
tsp I2C spike time 0 50 0 50 ns
tsds I2C serial data setup time 250 100 ns
tsdh I2C serial data hold time 0 0 ns
ticr I2C input rise time 1000 20 + 0.1Cb(1) 300 ns
ticf I2C input fall time 300 20 + 0.1Cb(1) 300 ns
tocf I2C output fall time 300 20 + 0.1Cb(1) 300 μs
tbuf I2C bus free time 4.7 1.3 μs
tsts I2C Start setup time 4.7 0.6 μs
tsth I2C Start hold time 4 0.6 μs
tsps I2C Stop setup time 4 0.6 μs
tvd(data) Valid data time (SCL low to SDA valid) 1 1 μs
tvd(ack) Valid data time of ACK
(ACK signal from SCL low to SDA low)
1 1 μs
(1) Cb = total capacitance of one bus line in pF
bq32000 i2c_timing_dgm_lus900.gifFigure 1. I2C Timing Diagram

6.7 Typical Characteristics

bq32000 C001_SLUS900.png
Figure 2. Current Consumption vs Backup Supply Voltage
bq32000 C002_SLUS900.png
Figure 3. Current Consumption vs Backup Supply Voltage