ZHCSG63C December   2013  – July 2018

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     无线电源联盟(WPC 或者 Qi)感应式充电系统
  4. 修订历史记录
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 A Brief Description of the Wireless System
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Details of a Qi Wireless Power System and bq51003 Power Transfer Flow Diagrams
      2. 8.3.2  Dynamic Rectifier Control
      3. 8.3.3  Dynamic Efficiency Scaling
      4. 8.3.4  RILIM Calculations
      5. 8.3.5  Input Overvoltage
      6. 8.3.6  Adapter Enable Functionality and EN1/EN2 Control
      7. 8.3.7  End Power Transfer Packet (WPC Header 0x02)
      8. 8.3.8  Status Outputs
      9. 8.3.9  WPC Communication Scheme
      10. 8.3.10 Communication Modulator
      11. 8.3.11 Adaptive Communication Limit
      12. 8.3.12 Synchronous Rectification
      13. 8.3.13 Temperature Sense Resistor Network (TS)
      14. 8.3.14 3-State Driver Recommendations for the TS-CTRL Pin
      15. 8.3.15 Thermal Protection
      16. 8.3.16 WPC v1.2 Compliance – Foreign Object Detection
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 bq51003 Wireless Power Receiver Used as a Power Supply
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Using the bq51003 as a Wireless Power Supply
          2. 9.2.1.2.2 Series and Parallel Resonant Capacitor Selection
          3. 9.2.1.2.3 COMM, CLAMP, and BOOT Capacitors
          4. 9.2.1.2.4 Control Pins and CHG
          5. 9.2.1.2.5 Current Limit and FOD
          6. 9.2.1.2.6 RECT and OUT Capacitance
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Dual Power Path: Wireless Power and DC Input
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 器件支持
      1. 12.1.1 开发支持
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 术语表
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Series and Parallel Resonant Capacitor Selection

Shown in Figure 32, the capacitors C1 (series) and C2 (parallel) make up the dual resonant circuit with the receiver coil. These two capacitors must be sized correctly per the WPC v1.2 specification. Figure 33 illustrates the equivalent circuit of the dual resonant circuit:

bq51003 dual_circuit_lvsat9.gifFigure 33. Dual Resonant Circuit With the Receiver Coil

Section 4.2 (Power Receiver Design Requirements) in Part 1 of the WPC v1.2 specification highlights in detail the sizing requirements. To summarize, the receiver designer will be required take inductance measurements with a fixed test fixture. Figure 34 shows the test fixture.

bq51003 primary_shield_lvsat9.gifFigure 34. WPC v1.2 Receiver Coil Test Fixture for the Inductance Measurement Ls’ (Copied from System Description Wireless Power Transfer, Volume 1: Low Power, Part 1 Interface Definition,
Version 1.2)

The primary shield is to be 50 mm x 50 mm x 1 mm of Ferrite material PC44 from TDK Corp. The gap dZ is to be 3.4 mm. The receiver coil, as it will be placed in the final system (that is, the back cover and battery must be included if the system calls for this), is to be placed on top of this surface and the inductance is to be measured at 1-V RMS and a frequency of 100 kHz. This measurement is termed Ls’. The same measurement is to be repeated without the test fixture shown in Figure 34. This measurement is termed Ls or the free-space inductance. Each capacitor can then be calculated using Equation 6:

Equation 6. bq51003 eq4_C1_C2_lusay6.gif

where

  • fS is 100 kHz +5/-10%
  • fD is 1 MHz ±10%.

C1 must be chosen first prior to calculating C2.

The quality factor must be greater than 77 and can be determined by Equation 7:

Equation 7. bq51003 eq5_Q_lusay6.gif

where

  • R is the DC resistance of the receiver coil. All other constants are defined above.