ZHCSM89 july   2021 BQ51013B-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. Revision History
  6. Description (continued)
  7. Device Comparison Table
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Details of a Qi Wireless Power System and BQ51013B-Q1 Power Transfer Flow Diagrams
      2. 9.3.2  Dynamic Rectifier Control
      3. 9.3.3  Dynamic Efficiency Scaling
      4. 9.3.4  RILIM Calculations
      5. 9.3.5  Input Overvoltage
      6. 9.3.6  Adapter Enable Functionality and EN1/EN2 Control
      7. 9.3.7  End Power Transfer Packet (WPC Header 0x02)
      8. 9.3.8  Status Outputs
      9. 9.3.9  WPC Communication Scheme
      10. 9.3.10 Communication Modulator
      11. 9.3.11 Adaptive Communication Limit
      12. 9.3.12 Synchronous Rectification
      13. 9.3.13 Temperature Sense Resistor Network (TS)
      14. 9.3.14 3-State Driver Recommendations for the TS/CTRL Pin
      15. 9.3.15 Thermal Protection
      16. 9.3.16 WPC v1.2 Compliance – Foreign Object Detection
      17. 9.3.17 Receiver Coil Load-Line Analysis
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 BQ51013B-Q1 Wireless Power Receiver Used as a Power Supply
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Using The BQ51013B-Q1 as a Wireless Power Supply: (See )
          2. 10.2.1.2.2 Series and Parallel Resonant Capacitor Selection
          3. 10.2.1.2.3 Recommended RX Coils
          4. 10.2.1.2.4 COMM, CLAMP, and BOOT Capacitors
          5. 10.2.1.2.5 Control Pins and CHG
          6. 10.2.1.2.6 Current Limit and FOD
          7. 10.2.1.2.7 RECT and OUT Capacitance
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Dual Power Path: Wireless Power and DC Input
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 Wireless and Direct Charging of a Li-Ion Battery at 800 mA
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curves
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 第三方米6体育平台手机版_好二三四免责声明
      2. 13.1.2 Development Support
    2. 13.2 接收文档更新通知
    3. 13.3 支持资源
    4. 13.4 Trademarks
    5. 13.5 静电放电警告
    6. 13.6 术语表
  15. 14Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Electrical Characteristics

over operating free-air temperature range, –40°C to 125°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VUVLO Undervoltage lockout VRECT: 0 V → 3 V 2.5 2.7 2.8 V
VHYS-UVLO Hysteresis on UVLO VRECT: 3 V → 2 V

0.25

V
VRECT-OVP Input overvoltage threshold VRECT: 5 V → 16 V 14.5 15 15.5 V
VHYS-OVP Hysteresis on OVP VRECT: 16 V → 5 V

0.15

V
VRECT-Th1 Dynamic VRECT Threshold 1 ILOAD < 0.1 x IIMAX (ILOAD rising) 7.08 V
VRECT-Th2 Dynamic VRECT Threshold 2 0.1 x IIMAX < ILOAD < 0.2 x IIMAX
(ILOAD rising)
6.28 V
VRECT-Th3 Dynamic VRECT Threshold 3 0.2 x IIMAX < ILOAD < 0.4 x IIMAX
(ILOAD rising)
5.53 V
VRECT-Th4 Dynamic VRECT Threshold 4 ILOAD > 0.4 x IIMAX (ILOAD rising) 5.11 V
VRECT-DPM Rectifier undervoltage protection, restricts IOUT at VRECT-DPM 3 3.1 3.2 V
VRECT-REV Rectifier reverse voltage protection at the output VRECT-REV = VOUT - VRECT,
VOUT = 10 V

7

8 9 V
QUIESCENT CURRENT
IRECT Active chip quiescent current consumption from RECT ILOAD = 0 mA, 0°C ≤ TJ ≤ 85°C 8 10 mA
ILOAD = 300 mA,
0°C ≤ TJ ≤ 85°C
2 3 mA
IOUT Quiescent current at the output when wireless power is disabled (Standby) VOUT = 5 V, 0°C ≤ TJ ≤ 85°C 20 35 µA
ILIM SHORT CIRCUIT
RILIM-SHORT Highest value of ILIM resistance to ground (RILIM) considered a fault (short). Monitored for IOUT > 100 mA RILIM: 200 Ω → 50 Ω. IOUT latches off, cycle power to reset 120 Ω
tDGL-Short Deglitch time transition from ILIM short to IOUT disable 1 ms
IILIM_SHORT,OK ILIM-SHORT,OK enables the ILIM short comparator when IOUT is greater than this value ILOAD: 0 mA → 200 mA 116 145 165 mA
IILIM_SHORT,OK HYST Hysteresis for ILIM-SHORT,OK comparator ILOAD: 0 mA → 200 mA 30 mA
IOUT Maximum output current limit, CL Maximum ILOAD that will be delivered for 1 ms when ILIM is shorted

2450

mA
OUTPUT
VOUT-REG Regulated output voltage ILOAD = 1000 mA 4.92 5.00 5.04 V
ILOAD = 10 mA 4.94 5.01 5.06
KILIM Current programming factor for hardware protection RILIM = KILIM / IILIM, where IILIM is the hardware current limit.
IOUT = 1 A

285

314 321
KIMAX Current programming factor for the nominal operating current IIMAX = KIMAX / RILIM where IMAX is the maximum normal operating current.
IOUT = 1 A
262
IOUT Current limit programming range 1500 mA
ICOMM Current limit during WPC communication IOUT > 300 mA

Iout + 50

mA
IOUT < 300 mA

320

380

440

mA
tHOLD Hold off time for the communication current limit during start-up 1 s
TS / CTRL FUNCTIONALITY
VTS-Bias Internal TS Bias Voltage (VTS is the voltage at the TS/CTRL pin, VTS-Bias is thet internal bias voltage) ITS-Bias < 100 µA (periodically driven see tTS/CTRL) 2 2.2 2.4 V
VCOLD Rising threshold VTS-Bias: 50% → 60% 56.5 58.7 60.8 %VTS-Bias
VCOLD-Hyst Falling hysteresis VTS-Bias: 60% → 50% 2 %VTS-Bias
VHOT Falling threshold VTS-Bias: 20% → 15% 18.5 19.6 20.7 %VTS-Bias
VHOT-Hyst Rising hysteresis VTS-Bias: 15% → 20% 3 %VTS-Bias
VCTRL-High Voltage on CTRL pin for a high 0.2 5 V
VCTRL-Low Voltage on CTRL pin for a low 0 0.05 mV
tTS/CTRL-Meas Time period of TS/CTRL measurements (when VTS-Bias is being driven internally) Synchronous to the communication period 24 ms
tTS-Deglitch Deglitch time for all TS comparators 10 ms
RTS Pullup resistor for the NTC network. Pulled up to VTB-Bias 18 20 22
THERMAL PROTECTION
TJ-SD Thermal shutdown temperature 155 °C
TJ-Hys Thermal shutdown hysteresis 20 °C
OUTPUT LOGIC LEVELS ON CHG
VOL Open-drain CHG pin ISINK = 5 mA 500 mV
IOFF CHG leakage current when disabled V CHG = 20 V 1 µA
COMM PIN
RDS(ON) COMM1 and COMM2 VRECT = 2.6 V 1.5 Ω
IOFF COMMx pin leakage current VCOMM1 = 20 V, VCOMM2 = 20 V 1 µA
CLAMP PIN
RDS(ON) CLAMP1 and CLAMP2 0.8 Ω
ADAPTER ENABLE
VAD-Pres VAD Rising threshold voltage VAD 0 V → 5 V 3.5 3.6 3.8 V
VAD-PresH VAD hysteresis VAD 5 V → 0 V 400 mV
IAD Input leakage current VRECT = 0 V, VAD = 5 V 60 μA
RAD Pullup resistance from AD-EN to OUT when adapter mode is disabled and VOUT > VAD, EN-OUT VAD = 0 V, VOUT = 5 V 200 350 Ω
VAD-Diff Voltage difference between VAD and V AD-EN when adapter mode is enabled VAD = 5 V, 0°C ≤ TJ ≤ 85°C 3 4.5 5 V
SYNCHRONOUS RECTIFIER
IOUT-SR IOUT at which the synchronous rectifier enters half-synchronous mode, SYNC_EN ILOAD 200 mA → 0 mA 80 100 135 mA
IOUT-SRH Hysteresis for IOUT,SR (full-synchronous mode enabled) ILOAD 0 mA → 200 mA 30 mA
VHS-DIODE High-side diode drop when the rectifier is in half-synchronous mode IAC-VRECT = 250 mA and
TJ = 25°C
0.7 V
EN1 AND EN2
VIL Input low threshold for EN1 and EN2 0.4 V
VIH Input high threshold for EN1 and EN2 1.3 V
RPD EN1 and EN2 pulldown resistance 200
ADC (WPC RELATED MEASUREMENTS AND COEFFICIENTS)
IOUT SENSE Accuracy of the current sense over the load range IOUT = 750 mA - 1000 mA –1.5% 0% 0.9%