ZHCSAX2F July   2012  – June 2017

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 A Brief Description of the Wireless System
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Using the bq5105x as a Wireless Li-Ion/Li-Pol Battery Charger (With Reference to )
      2. 8.3.2 Details of a Qi Wireless Power System and bq5105xB Power Transfer Flow Diagrams
      3. 8.3.3 Battery Charge Profile
      4. 8.3.4 Battery Charging Process
        1. 8.3.4.1  Precharge Mode (VBAT ≤ VLOWV)
        2. 8.3.4.2  Fast Charge Mode / Constant Voltage Mode
        3. 8.3.4.3  Battery Charge Current Setting Calculations
          1. 8.3.4.3.1 RILIM Calculations
          2. 8.3.4.3.2 Termination Calculations
        4. 8.3.4.4  Battery-Charger Safety and JEITA Guidelines
          1. 8.3.4.4.1 bq51050B and bq51051B JEITA
          2. 8.3.4.4.2 bq51052B Modified JEITA
        5. 8.3.4.5  Input Overvoltage
        6. 8.3.4.6  End Power Transfer Packet (WPC Header 0x02)
        7. 8.3.4.7  Status Output
        8. 8.3.4.8  Communication Modulator
        9. 8.3.4.9  Adaptive Communication Limit
        10. 8.3.4.10 Synchronous Rectification
        11. 8.3.4.11 Internal Temperature Sense (TS Function of the TS/CTRL Pin)
          1. 8.3.4.11.1 TS/CTRL Function
          2. 8.3.4.11.2 Thermal Protection
        12. 8.3.4.12 WPC v1.2 Compatibility
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 bq51050B Used as a Wireless Power Receiver and Li-Ion/Li-Pol Battery Charger
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Series and Parallel Resonant Capacitor Selection
          2. 9.2.1.2.2 COMM, CLAMP and BOOT Capacitors
          3. 9.2.1.2.3 Charging and Termination Current
          4. 9.2.1.2.4 Adapter Enable
          5. 9.2.1.2.5 Charge Indication and Power Capacitors
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Application for Wired Charging
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Blocking Back-Back FET
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 相关链接
    3. 12.3 接收文档更新通知
    4. 12.4 社区资源
    5. 12.5 商标
    6. 12.6 静电放电警告
    7. 12.7 Glossary
  13. 13机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • YFP|28
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings(2)(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Input voltage RECT, COMM1, COMM2, BAT, CHG, CLAMP1, CLAMP2 –0.3 20 V
AC1, AC2 –0.8 20 V
AD, AD-EN –0.3 30 V
BOOT1, BOOT2 –0.3 26 V
EN2, TERM, FOD, TS/CTRL, ILIM –0.3 7 V
Input current AC1, AC2 2 A(RMS)
Output current BAT 1.5 A
Output sink current CHG 15 mA
COMM1, COMM2 1.0 A
Junction temperature, TJ –40 150 °C
Storage temperature, Tstg –65 150 °C
All voltages are with respect to the VSS terminal, unless otherwise noted.
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN Input voltage range RECT 4 10 V
IIN Input current Internal Rectifier (voltage monitored at RECT node) 1.5 A
IBAT BAT(output) current BAT bq51050B, bq51051B 1.5 A
bq51052B 0.8
VAD Adapter voltage AD 15 V
IAD-EN Sink current AD-EN 1 mA
ICOMM COMM sink current COMM 500 mA
TJ Junction temperature 0 125 °C

Thermal Information

THERMAL METRIC(1) bq51050B, bq51051B, bq51052B UNIT
YFP (DSGBA) RHL (VQFN)
28 PINS 20 PINS
RθJA Junction-to-ambient thermal resistance 58.9 37.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.2 35.5 °C/W
RθJB Junction-to-board thermal resistance 9.1 13.6 °C/W
ψJT Junction-to-top characterization parameter 1.4 0.5 °C/W
ψJB Junction-to-board characterization parameter 8.9 13.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a 2.7 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

Over junction temperature range 0°C ≤ TJ ≤ 125°C and recommended supply voltage (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VUVLO Undervoltage lockout VRECT: 0 V → 3 V 2.6 2.7 2.8 V
VHYS-UVLO Hysteresis on UVLO VRECT: 3 V → 2 V 250 mV
VOVP Input overvoltage threshold VRECT: 5 V → 16 V 14.5 15 15.5 V
VHYS-OVP Hysteresis on OVP VRECT: 16 V → 5 V 150 mV
VRECT-REG(1) VRECT regulation voltage 5.11 V
ILOAD ILOAD Hysteresis for dynamic VRECT thresholds as a % of IILIM ILOAD falling 5%
VTRACK Tracking VRECT regulation above VBAT VBAT = 3.5 V,
IBAT ≥ 500 mA
300 mV
VRECT-REV Rectifier reverse voltage protection at the BAT(output) VRECT-REV = VBAT – VRECT,
VBAT = 10 V
8.3 9 V
VRECT-DPM Rectifier undervoltage protection, restricts IBAT at VRECT-DPM 3 3.1 3.2 V
QUIESCENT CURRENT
IRECT Active chip quiescent current consumption from RECT (when wireless power is present) IBAT = 0 mA, 0°C ≤ TJ ≤ 85°C 8 10 mA
IBAT = 300 mA, 0°C ≤ TJ ≤ 85°C 2 3 mA
IQ Quiescent current at the BAT when wireless power is disabled (Standby) VBAT = 4.2 V, 0°C ≤ TJ ≤ 85°C 12 20 µA
ILIM SHORT PROTECTION
RILIM-SHORT Highest value of ILIM resistor considered a fault (short).
Monitored for IBAT > ILIM_SHORT, OK
RILIM: 200 Ω → 50 Ω. IBAT latches off, cycle power to reset bq51050B, bq51051B 120 Ω
bq51052B 235
tDGL-Short Deglitch time transition from ILIM short to IBAT disable 1 ms
ILIM_SHORT, OK ILIM-SHORT,OK enables the IILIM short comparator when IBAT is greater than this value IBAT: 0 mA → 200 mA bq51050B, bq51051B 110 145 165 mA
bq51052B 55 75 95
ILIM-SHORT, OK HYSTERESIS Hysteresis for ILIM-SHORT,OK comparator IBAT: 200 mA → 0 mA 30 mA
IBAT-CL Maximum output current limit Maximum IBAT that will be delivered for up to 1 ms when ILIM is shorted to PGND 2.4 A
BATTERY SHORT PROTECTION
VBAT(SC) BAT pin short-circuit detection/precharge threshold VBAT: 3 V → 0.5 V, no deglitch 0.75 0.8 0.85 V
VBAT(SC)-HYS VBAT(SC) hysteresis VBAT: 0.5 V → 3 V 100 mV
IBAT(SC) Source current to BAT pin during short-circuit detection VBAT = 0 V bq51050B, bq51051B 12 18 22 mA
bq51052B 12 18 25
VOLTAGE REGULATION PHASE
IEndTrack IBAT threshold during Voltge Regulation Phase that changes VRECT level from VBAT+VTRACK to VRECT-REG IBAT decreasing bq51050B, bq51051B 0.35 * IBULK mA
bq51052B 0.05 * IBULK
PRECHARGE
VLOWV Precharge to fast charge transition threshold VBAT: 2 V → 4 V 2.9 3.0 3.1 V
KPRECHG Precharge current as a percentage of the programmed charge current setting (IBULK) VLOWV > VBAT > VBAT(SC)
IBAT: 50 mA – 300 mA
18% 20% 23%
IPRECHG IBAT during precharge VLOWV > VBAT > VBAT(SC), IBULK = 500 mA 100 mA
tprecharge Precharge time-out VBAT(SC) < VBAT < VLOWV 30 min
tDGL1(LOWV) Deglitch time, pre- to fast-charge 25 ms
tDGL2(LOWV) Deglitch time, fast- to precharge 25 ms
OUTPUT
VOREG Regulated BAT(output) voltage IBAT = 1000 mA bq51050B 4.16 4.20 4.22 V
bq51051B 4.30 4.35 4.37
bq51052B 4.36 4.40 4.44
VDO Drop-out voltage, RECT to BAT IBAT = 1 A 110 190 mV
KILIM Current programming factor RLIM = KILIM / IIBULK (500 mA - 1.5 A) bq51050B, bq51051B 303 314 321
RLIM = KILIM / IIBULK (500 mA - 1.0 A) bq51052B
IBULK Battery charging current limits KILIM 303 to 321 bq51050B, bq51051B 500 1,500 mA
bq51052B 500 1,000
tfast-charge Fast-charge timer VLOWV < VBAT < VBAT-REG 10 hours
IBAT-R Battery charge current limit programming range 1500 mA
ICOMM-CL Current limit during communication 330 390 420 mA
TERMINATION
KTERM Programmable termination current as a percentage of IIBULK RTERM = %IIBULK x KTERM (IBULK = 500 mA) 200 240 280 Ω/%
ITERM-Th Termination current from BAT, defined with KTERM, as the current that terminates the charge cycle IBAT decreasing, RTERM = 2.4k Ω, IBULK = 1000 mA 100 mA
ITERM Constant current at the TERM pin to bias the termination reference 40 50 55 µA
VRECH Recharge threshold bq51050B VBAT-REG
–135mV
VBAT-REG
–110mV
VBAT-REG
–90mV
V
bq51051B VBAT-REG
–125mV
VBAT-REG
–95mV
VBAT-REG
–70mV
bq51052B VBAT-REG
–125mV
VBAT-REG
–95mV
VBAT-REG
–70mV
ITermination Termination current setting limits 120 mA
TS / CTRL FUNCTIONALITY
VTSB Internal TS bias voltage (VTS is the voltage at the TS/CTRL pin, VTSB is the internal bias voltage) ITSB< 100 µA (periodically
driven see tTS/CTRL-Meas)
2 2.2 2.4 V
V0C-R Rising threshold VTS: 50% → 60% 57 58.7 60 %VTSB
V0C-Hyst Hysteresis on 0°C Comparator VTS: 60% → 50% 2.4 %VTSB
V10C Rising threshold VTS: 40% → 50% 46 47.8 49 %VTSB
V10C-Hyst Hysteresis on 10°C Comparator VTS: 50% → 40% 2 %VTSB
V45C Falling threshold VTS: 25% → 15% 18 19.6 21 %VTSB
V45C-Hyst Hysteresis on 45°C Comparator VTS: 15% → 25% 3 %VTSB
V60C Falling threshold VTS: 20% → 5% 12 13.1 14 %VTSB
V60C-Hyst Hysteresis on 60°C Comparator VTS: 5% → 20% 1 %VTSB
I45C IBULK reduction percentage at 45°C (in full JEITA mode - N/A for bq51052B) VTS: 25% → 15%, IBAT = IBULK 45% 50% 55%
VO-J Voltage regulation during JEITA temperature range bq51050B 4.06 V
bq51051B 4.2
bq51052B 4.2
VCTRL-HI Voltage on CTRL pin for a high 0.2 5 V
VCTRL-LOW Voltage on CTRL pin for a low 0 0.1 V
tTS/CTRL-Meas Time period of TS/CTRL measurements (when VTSB is being driven internally) TS bias voltage is only driven when communication packets are sent 24 ms
tTS-Deglitch Deglitch time for all TS comparators 10 ms
NTC-Pullup Pullup resistor for the NTC network. Pulled up to the TS bias LDO. 18 20 22
NTC-RNOM Nominal resistance requirement at 25°C of the NTC resistor 10
NTC-Beta Beta requirement for accurate temperature sensing through the above specified thresholds 3380 Ω
THERMAL PROTECTION
TJ-SD Thermal shutdown temperature 155 °C
TJ-Hys Thermal shutdown hysteresis 20 °C
OUTPUT LOGIC LEVELS ON CHG
VOL Open-drain CHG pin ISINK = 5 mA 500 mV
IOFF,CHG CHG leakage current when disabled VCHG = 20 V,
0°C ≤ TJ ≤ 85°C
1 µA
COMM PIN
RDS-ON(COMM) COMM1 and COMM2 VRECT = 2.6 V 1 Ω
fCOMM Signaling frequency on COMM pin 2 kb/s
IOFF,COMM COMM pin leakage current VCOMM1 = 20 V,
VCOMM2 = 20 V
1 µA
CLAMP PIN
RDS-ON(CLAMP) CLAMP1 and CLAMP2 0.75 Ω
ADAPTER ENABLE
VAD-Pres VAD Rising threshold voltage. EN-UVLO VAD 0 V → 5 V 3.5 3.6 3.8 V
VAD-PresH VAD-Pres hysteresis, EN-HYS VAD 5 V → 0 V 400 mV
IAD Input leakage current VRECT = 0 V, VAD = 5 V 60 µA
RAD Pullup resistance from AD-EN to BAT when adapter mode is disabled and VBAT > VAD, EN-OUT VAD = 0 V, VBAT = 5 V 200 350 Ω
VAD-Diff Voltage difference between VAD and VAD-EN when adapter mode is enabled, EN-ON VAD = 5 V, 0°C ≤ TJ ≤ 85°C 3 4.5 5 V
SYNCHRONOUS RECTIFIER
IBAT-SR IBAT at which the synchronous rectifier enters half synchronous mode, SYNC_EN IBAT 200 mA → 0 mA bq51050B, bq51051B 80 115 140 mA
bq51052B 20 50 65
IBAT-SRH Hysteresis for IBAT,SR (full-synchronous mode enabled) IBAT 0 mA → 200 mA bq51050B, bq51051B 25
bq51052B 28
VHS-DIODE High-side diode drop when the rectifier is in half synchronous mode IAC-VRECT = 250 mA, and TJ = 25°C 0.7 V
EN2
VIL Input low threshold for EN2 0.4 V
VIH Input high threshold for EN2 1.3 V
RPD, EN EN2 pulldown resistance 200
ADC
PowerREC Received power measurement 0 W – 5 W received power after calibration of Rx magnetics losses 0.25 W
VRECT-REG is overridden when rectifier foldback mode is active (VRECT-REG-VTRACK).

Typical Characteristics

bq51050B bq51051B bq51052B G6_lusb40.gif Figure 1. Rectifier Efficiency
bq51050B bq51051B bq51052B G5_new_lusb40.gif Figure 3. VRECT, VBAT versus Output Current
bq51050B bq51051B bq51052B G4_new_lusb40.gif Figure 5. Output Ripple versus Output Current
bq51050B bq51051B bq51052B 300mA_Charge_Efficiency.gif Figure 7. bq51052B 300-mA Fast Charge Efficiency (DC Input to DC Output)
bq51050B bq51051B bq51052B 800mA_Charge_Efficiency.gif Figure 9. bq51052B 800-mA Fast Charge Efficiency (DC Input to DC Output)
bq51050B bq51051B bq51052B fig11_lusb40.gif Figure 11. Battery Insertion in Precharge Mode
bq51050B bq51051B bq51052B fig_13_lusb40.gif Figure 13. TS Fault
bq51050B bq51051B bq51052B fig15_lusb40.gif Figure 15. Precharge to Fast-Charge Transition
bq51050B bq51051B bq51052B fig17_lusb40.gif Figure 17. JEITA Functionality (Falling Temp) - bq51050B/bq51051B
bq51050B bq51051B bq51052B G3_new_lusb40.gif Figure 2. IC Efficiency (AC Input to DC Output)
bq51050B bq51051B bq51052B G2_new_lusb40.gif Figure 4. VRECT versus Output Current at RILIM=600 Ω (ILIM = 523 mA)
bq51050B bq51051B bq51052B G5_lusb40.gif Figure 6. System Efficiency (DC Input to DC Output)
bq51050B bq51051B bq51052B 300mA_Taper_Efficiency.gif Figure 8. bq51052B 300-mA Taper Charge Efficiency (DC Input to DC Output)
bq51050B bq51051B bq51052B 800mA_Taper_Efficiency.gif Figure 10. bq51052B 800-mA Taper Charge Efficiency (DC Input to DC Output)
bq51050B bq51051B bq51052B fig12_lusb40.gif Figure 12. Battery Insertion in Fast-Charge Mode
bq51050B bq51051B bq51052B fig14_lusb40.gif Figure 14. TS Ground Fault
bq51050B bq51051B bq51052B fig16_lusb40.gif Figure 16. JEITA Functionality (Rising Temp) - bq51050B/bq51051B
bq51050B bq51051B bq51052B fig19_lusb40.gif Figure 18. Battery Short to Precharge Mode Transition