ZHCSJC1D April   2019  – May 2021 CC3235S , CC3235SF

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 功能方框图
  5. Revision History
  6. Device Comparison
    1. 6.1 Related Products
  7. Terminal Configuration and Functions
    1. 7.1 Pin Diagram
    2. 7.2 Pin Attributes
      1.      11
    3. 7.3 Signal Descriptions
      1.      13
    4. 7.4 Pin Multiplexing
    5. 7.5 Drive Strength and Reset States for Analog and Digital Multiplexed Pins
    6. 7.6 Pad State After Application of Power to Device, Before Reset Release
    7. 7.7 Connections for Unused Pins
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Power-On Hours (POH)
    4. 8.4  Recommended Operating Conditions
    5. 8.5  Current Consumption Summary (CC3235S)
      1.      24
      2.      25
    6. 8.6  Current Consumption Summary (CC3235SF)
      1.      27
      2.      28
    7. 8.7  TX Power Control for 2.4 GHz Band
    8. 8.8  TX Power Control for 5 GHz
    9. 8.9  Brownout and Blackout Conditions
    10. 8.10 Electrical Characteristics for GPIO Pins
      1.      33
      2.      34
    11. 8.11 Electrical Characteristics for Pin Internal Pullup and Pulldown
    12. 8.12 WLAN Receiver Characteristics
      1.      37
      2.      38
    13. 8.13 WLAN Transmitter Characteristics
      1.      40
      2.      41
    14. 8.14 WLAN Transmitter Out-of-Band Emissions
      1.      43
      2.      44
    15. 8.15 BLE/2.4 GHz Radio Coexistence and WLAN Coexistence Requirements
    16. 8.16 Thermal Resistance Characteristics for RGK Package
    17. 8.17 Timing and Switching Characteristics
      1. 8.17.1 Power Supply Sequencing
      2. 8.17.2 Device Reset
      3. 8.17.3 Reset Timing
        1. 8.17.3.1 nRESET (32-kHz Crystal)
        2.       52
        3.       53
        4. 8.17.3.2 nRESET (External 32-kHz Clock)
          1.        55
      4. 8.17.4 Wakeup From HIBERNATE Mode
      5. 8.17.5 Clock Specifications
        1. 8.17.5.1 Slow Clock Using Internal Oscillator
        2. 8.17.5.2 Slow Clock Using an External Clock
          1.        60
        3. 8.17.5.3 Fast Clock (Fref) Using an External Crystal
          1.        62
        4. 8.17.5.4 Fast Clock (Fref) Using an External Oscillator
          1.        64
      6. 8.17.6 Peripherals Timing
        1. 8.17.6.1  SPI
          1. 8.17.6.1.1 SPI Master
            1.         68
          2. 8.17.6.1.2 SPI Slave
            1.         70
        2. 8.17.6.2  I2S
          1. 8.17.6.2.1 I2S Transmit Mode
            1.         73
          2. 8.17.6.2.2 I2S Receive Mode
            1.         75
        3. 8.17.6.3  GPIOs
          1. 8.17.6.3.1 GPIO Output Transition Time Parameters (Vsupply = 3.3 V)
            1.         78
          2. 8.17.6.3.2 GPIO Input Transition Time Parameters
            1.         80
        4. 8.17.6.4  I2C
          1.        82
        5. 8.17.6.5  IEEE 1149.1 JTAG
          1.        84
        6. 8.17.6.6  ADC
          1.        86
        7. 8.17.6.7  Camera Parallel Port
          1.        88
        8. 8.17.6.8  UART
        9. 8.17.6.9  SD Host
        10. 8.17.6.10 Timers
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  Arm® Cortex®-M4 Processor Core Subsystem
    3. 9.3  Wi-Fi® Network Processor Subsystem
      1. 9.3.1 WLAN
      2. 9.3.2 Network Stack
    4. 9.4  Security
    5. 9.5  FIPS 140-2 Level 1 Certification
    6. 9.6  Power-Management Subsystem
    7. 9.7  Low-Power Operating Mode
    8. 9.8  Memory
      1. 9.8.1 External Memory Requirements
      2. 9.8.2 Internal Memory
        1. 9.8.2.1 SRAM
        2. 9.8.2.2 ROM
        3. 9.8.2.3 Flash Memory
        4. 9.8.2.4 Memory Map
    9. 9.9  Restoring Factory Default Configuration
    10. 9.10 Boot Modes
      1. 9.10.1 Boot Mode List
    11. 9.11 Hostless Mode
  10. 10Applications, Implementation, and Layout
    1. 10.1 Application Information
      1. 10.1.1 BLE/2.4 GHz Radio Coexistence
      2. 10.1.2 Antenna Selection
      3. 10.1.3 Typical Application
    2. 10.2 PCB Layout Guidelines
      1. 10.2.1 General PCB Guidelines
      2. 10.2.2 Power Layout and Routing
        1. 10.2.2.1 Design Considerations
      3. 10.2.3 Clock Interface Guidelines
      4. 10.2.4 Digital Input and Output Guidelines
      5. 10.2.5 RF Interface Guidelines
  11. 11Device and Documentation Support
    1. 11.1  第三方米6体育平台手机版_好二三四免责声明
    2. 11.2  Tools and Software
    3. 11.3  Firmware Updates
    4. 11.4  Device Nomenclature
    5. 11.5  Documentation Support
    6. 11.6  Related Links
    7. 11.7  支持资源
    8. 11.8  Trademarks
    9. 11.9  静电放电警告
    10. 11.10 Export Control Notice
    11. 11.11 术语表
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Packaging Information
      1. 12.1.1 Package Option Addendum
        1. 12.1.1.1 Packaging Information
        2. 12.1.1.2 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Arm® Cortex®-M4 Processor Core Subsystem

The high-performance Arm® Cortex®-M4 processor provides a cost-conscious platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

  • The Arm Cortex-M4 core has low-latency interrupt processing with the following features:
    • A 32-bit Arm®Thumb® instruction set optimized for embedded applications
    • Handler and thread modes
    • Low-latency interrupt handling by automatic processor state saving and restoration during entry and exit
    • Support for Armv6 unaligned accesses
  • Nested vectored interrupt controller (NVIC) closely integrated with the processor core to achieve low-latency interrupt processing. The NVIC includes the following features:
    • Bits of priority configurable from 3 to 8
    • Dynamic reprioritization of interrupts
    • Priority grouping that enables selection of preempting interrupt levels and nonpreempting interrupt levels
    • Support for tail-chaining and late arrival of interrupts, which enables back-to-back interrupt processing without the overhead of state saving and restoration between interrupts
    • Processor state automatically saved on interrupt entry and restored on interrupt exit with no instruction overhead
    • Wake-up interrupt controller (WIC) providing ultra-low-power sleep mode support
  • Bus interfaces:
    • Advanced high-performance bus (AHB-Lite) interfaces: system bus interfaces
    • Bit-band support for memory and select peripheral that includes atomic bit-band write and read operations
  • Cost-conscious debug solution featuring:
    • Debug access to all memory and registers in the system, including access to memory-mapped devices, access to internal core registers when the core is halted, and access to debug control registers even while SYSRESETn is asserted
    • Serial wire debug port (SW-DP) or serial wire JTAG debug port (SWJ-DP) debug access
    • Flash patch and breakpoint (FPB) unit to implement breakpoints and code patches