SCHS023E November   1998  – September 2016 CD4013B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: Static
    6. 6.6 Electrical Characteristics: Dynamic
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • D|14
  • PW|14
  • N|14
  • NS|14
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
DC supply voltage, VDD(2) –0.5 20 V
Input voltage, all inputs –0.5 VDD + 0.5 V
DC input current, any one input 10 mA
Power dissipation, PD TA = –55°C to 100°C 500 mW
TA = 100°C to 125°C(3) 200
Device dissipation per output transistor 100 mW
Operating temperature, TA –55 125 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Voltages reference to VSS terminal
(3) Derate linearity at 12 mW/°C

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
Supply voltage 3 18 V
tS Data setup time VDD = 5 40 ns
VDD = 10 20
VDD = 15 15
tW Clock pulse width VDD = 5 140 ns
VDD = 10 60
VDD = 15 40
fCL Clock input frequency VDD = 5 3.5 7 MHz
VDD = 10 8 16
VDD = 15 12 24
trCL(1)
tfCL
Clock rise or fall time VDD = 5 15 µs
VDD = 10 10
VDD = 15 5
tW Set or reset pulse width VDD = 5 180 ns
VDD = 10 80
VDD = 15 50
(1) If more than one unit is cascaded in a parallel clocked operation, trCL must be made less than or equal to the sum of the fixed propagation delay time at 15 pF and the transistion time of the output driving stage for the estimated capacitive load.

6.4 Thermal Information

THERMAL METRIC(1) CD4013B UNIT
N (PDIP) D (SOIC) NS (SO) PW (TSSOP)
14 PINS 14 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 47.1 92.5 89.3 121 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 34.5 54 47.1 49.6 °C/W
RθJB Junction-to-board thermal resistance 27.1 46.8 48 62.7 °C/W
ψJT Junction-to-top characterization parameter 19.4 19 17 5.9 °C/W
ψJB Junction-to-board characterization parameter 27 46.5 47.7 62.1 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics: Static

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDDmax Quiescent device current VIN = 0 or 5, VDD = 5 TA = –55°C 1 µA
TA = –40°C 1
TA = 25°C 0.02 1
TA = 85°C 30
TA = 125°C 30
VIN = 0 or 10, VDD = 10 TA = –55°C 2
TA = –40°C 2
TA = 25°C 0.02 2
TA = 85°C 60
TA = 125°C 60
VIN = 0 or 15, VDD = 15 TA = –55°C 4
TA = –40°C 4
TA = 25°C 0.02 4
TA = 85°C 120
TA = 125°C 120
VIN = 0 or 20, VDD = 20 TA = –55°C 20
TA = –40°C 20
TA = 25°C 0.04 20
TA = 85°C 600
TA = 125°C 600
IOLmin Output low (sink) current VO = 0.4, VIN = 0 or 5,
VDD = 5
TA = –55°C 0.64 mA
TA = –40°C 0.61
TA = 25°C 0.51 1
TA = 85°C 0.42
TA = 125°C 0.36
VO = 0.5, VIN = 0 or 10,
VDD = 10
TA = –55°C 1.6
TA = –40°C 1.5
TA = 25°C 1.3 2.6
TA = 85°C 1.1
TA = 125°C 0.9
VO = 1.5, VIN = 0 or 15,
VDD = 15
TA = –55°C 4.2
TA = –40°C 4
TA = 25°C 3.4 6.8
TA = 85°C 2.8
TA = 125°C 2.4
IOHmin Output high (source) current VO = 4.6, VIN = 0 or 5,
VDD = 5
TA = –55°C –0.64 mA
TA = –40°C –0.61
TA = 25°C –0.51 –1
TA = 85°C –0.42
TA = 125°C –0.36
VO = 2.5, VIN = 0 or 5,
VDD = 5
TA = –55°C –2
TA = –40°C –1.8
TA = 25°C –1.6 –3.2
TA = 85°C –1.3
TA = 125°C –1.15
VO = 9.5, VIN = 0 or 10,
VDD = 10
TA = –55°C –1.6
TA = –40°C –1.5
TA = 25°C –1.3 –2.6
TA = 85°C –1.1
TA = 125°C –0.9
VO = 13.5, VIN = 0 or 15,
VDD = 15
TA = –55°C –4.2
TA = –40°C –4
TA = 25°C –3.4 –6.8
TA = 85°C –2.8
TA = 125°C –2.4
VOLmax Low-level output voltage VIN = 0 or 5, VDD = 5 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
0 0.05 V
VIN = 0 or 10, VDD = 10 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
0 0.05
VIN = 0 or 15, VDD = 15 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
0 0.05
VOHmin High-level output voltage VIN = 0 or 5, VDD = 5 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
4.95 5 V
VIN = 0 or 10, VDD = 10 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
9.95 10
VIN = 0 or 15, VDD = 15 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
14.95 15
VILmax Input low voltage VO = 0.5 or 4.5, VDD = 5 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
1.5 V
VO = 1 or 9, VDD = 10 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
3
VO = 1.5 or 13.5,
VDD = 15
TA = –55°C, –40°C,
25°C, 85°C, and 125°C
4
VIHmin Input high voltage VO = 0.5 or 4.5, VDD = 5 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
3.5 V
VO = 1 or 9, VDD = 10 TA = –55°C, –40°C,
25°C, 85°C, and 125°C
7
VO = 1.5 or 13.5,
VDD = 15
TA = –55°C, –40°C,
25°C, 85°C, and 125°C
11
IINmax Input current VIN = 0 or 18, VDD = 18 TA = –55°C ±0.1 µA
TA = –40°C ±0.1
TA = 25°C ±10–5 ±0.1
TA = 85°C ±1
TA = 125°C ±1

6.6 Electrical Characteristics: Dynamic

at TA = 25°C, input tr, tf = 20 ns, CL = 50 pF, RL = 20 kΩ (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tPHL,
tPLH
Propagation delay time,
clock to Q or Q outputs
VDD = 5 150 300 ns
VDD = 10 65 130
VDD = 15 45 90
tPLH Set to Q or reset to Q VDD = 5 150 300 ns
VDD = 10 65 130
VDD = 15 45 90
tPHL Set to Q or reset to Q VDD = 5 200 400 ns
VDD = 10 85 170
VDD = 15 60 120
tTHL,
tTLH
Transition time VDD = 5 100 200 ns
VDD = 10 50 100
VDD = 15 40 80
fCL Maximum clock input frequency(1) VDD = 5 3.5 7 MHz
VDD = 10 8 16
VDD = 15 12 24
tW Minimum clock pulse width VDD = 5 70 140 ns
VDD = 10 30 60
VDD = 15 20 40
Minimum set or reset pulse width VDD = 5 90 180 ns
VDD = 10 40 80
VDD = 15 25 50
tS Minimum data setup time VDD = 5 20 40 ns
VDD = 10 10 20
VDD = 15 7 15
tH Minimum data hold time VDD = 5, 10, 15 2 5 ns
trCL,
tfCL
Clock input rise or fall time VDD = 5 15 µs
VDD = 10 10
VDD = 15 5
CIN Input capacitance Any input 5 7.5 pF
(1) Input tr, tf = 5 ns

6.7 Typical Characteristics

CD4013B D001_SCHS063.gif Figure 1. Typical Output Low (Sink) Current
CD4013B D003_SCHS063.gif Figure 3. Typical Output High (Source) Current
CD4013B D023_SCHS023.gif
CLOCK or SET to Q, CLOCK or RESET to Q
Figure 5. Typical Propagation Delay Time
vs Load Capacitance
CD4013B D025_SCHS023.gif Figure 7. Typical Maximum Clock Frequency
vs Supply Voltage
CD4013B D002_SCHS063.gif Figure 2. Minimum Output Low (Sink) Current
CD4013B D004_SCHS063.gif Figure 4. Minimum Output High (Source) Current
CD4013B D024_SCHS023.gif
SET to Q or RESET to Q
Figure 6. Typical Propagation Delay Time
vs Load Capacitance
CD4013B D026_SCHS023.gif Figure 8. Typical Power Dissipation vs Frequency