SCAS892C February   2010  – December 2016 CDCE937-Q1 , CDCEL937-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Control Terminal Setting
      2. 10.3.2 Default Device Setting
    4. 10.4 Device Functional Modes
      1. 10.4.1 SDA and SCL Serial Interface
    5. 10.5 Programming
      1. 10.5.1 Data Protocol
      2. 10.5.2 Command Code Definition
      3. 10.5.3 Generic Programming Sequence
      4. 10.5.4 Byte Write Programming Sequence
      5. 10.5.5 Byte Read Programming Sequence
      6. 10.5.6 Block Write Programming Sequence
      7. 10.5.7 Block Read Programming Sequence
      8. 10.5.8 Timing Diagram for the SDA and SCL Serial Control Interface
      9. 10.5.9 SDA and SCL Hardware Interface
    6. 10.6 Register Maps
      1. 10.6.1 SDA and SCL Configuration Registers
  11. 11Application and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
        1. 11.2.2.1 Spread-Spectrum Clock (SSC)
        2. 11.2.2.2 PLL Multiplier or Divider Definition
        3. 11.2.2.3 Crystal Oscillator Start-Up
        4. 11.2.2.4 Frequency Adjustment With Crystal Oscillator Pulling
        5. 11.2.2.5 Unused Inputs and Outputs
        6. 11.2.2.6 Switching Between XO and VCXO Mode
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Related Links
    3. 14.3 Receiving Notification of Documentation Updates
    4. 14.4 Community Resources
    5. 14.5 Trademarks
    6. 14.6 Electrostatic Discharge Caution
    7. 14.7 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Power Supply Recommendations

There is no restriction on the power-up sequence. In case VDDOUT is applied first, TI recommends grounding VDD. In case VDDOUT is powered while VDD is floating, there is a risk of high current flowing on the VDDOUT pins.

The device has a power-up control that is connected to the 1.8-V supply. This keeps the whole device disabled until the 1.8-V supply reaches a sufficient voltage level. Then the device switches on all internal components, including the outputs. If a 3.3-V VDDOUT is available before the 1.8-V, the outputs stay disabled until the 1.8-V supply has reached a certain level.