SCAS895B May   2010  – February 2017 CDCLVC1102 , CDCLVC1103 , CDCLVC1104 , CDCLVC1106 , CDCLVC1108 , CDCLVC1110 , CDCLVC1112

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Power Considerations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VDD Supply voltage –0.5 4.6 V
VIN Input voltage(2) –0.5 VDD + 0.5 V
VO Output voltage(2) –0.5 VDD + 0.5 V
IIN Input current –20 20 mA
IO Continuous output current –50 50 mA
TJ Maximum junction temperature 125 °C
Tstg Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
This value is limited to 4.6 V maximum.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Supply voltage 3.3-V supply 3.0 3.3 3.6 V
2.5-V supply 2.3 2.5 2.7
VIL Low-level input voltage VDD = 3.0 V to 3.6 V VDD/2 – 600 mV
VDD = 2.3 V to 2.7 V VDD/2 – 400
VIH High-level input voltage VDD = 3.0 V to 3.6 V VDD/2 + 600 mV
VDD = 2.3 V to 2.7 V VDD/2 + 400
Vth Input threshold voltage VDD = 2.3 V to 3.6 V VDD/2 mV
tr / tf Input slew rate 1 4 V/ns
tw Minimum pulse width at CLKIN VDD = 3.0 V to 3.6 V 1.8 ns
VDD = 2.3 V to 2.7 V 2.75
fCLK LVCMOS clock Input Frequency VDD = 3.0 V to 3.6 V DC 250 MHz
VDD = 2.3 V to 2.7 V DC 180
TA Operating free-air temperature –40 85 °C

Thermal Information

THERMAL METRIC(1) CDCLVC1102
CDCLVC1103
CDCLVC1104
CDCLVC1106 CDCLVC1108 CDCLVC11010 CDCLVC1112 UNIT
PW (TSSOP)
8 PINS 14 PINS 16 PINS 20 PINS 24 PINS
RθJA Junction-to-ambient thermal resistance(2) 149.4 112.6 108.4 83.0 87.9 °C/W
RθJC(top) Junction-to-case(top) thermal resistance (3) 69.4 48.0 33.6 32.3 26.5 °C/W
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Electrical Characteristics

Over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
OVERALL PARAMETERS FOR ALL VERSIONS
IDD Static device current(2) 1G = VDD; CLKIN = 0 V or VDD; IO = 0 mA; VDD = 3.6 V 6 10 mA
1G = VDD; CLKIN = 0 V or VDD; IO = 0 mA; VDD = 2.7 V 3 6
IPD Power-down current 1G = 0 V; CLKIN = 0 V or VDD; IO = 0 mA; VDD = 3.6 V or 2.7 V 60 µA
CPD Power dissipation capacitance per output(3) VDD = 3.3 V; f = 10 MHz 6 pF
VDD = 2.5 V; f = 10 MHz 4.5
II Input leakage current at 1G VI = 0 V or VDD, VDD = 3.6 V or 2.7 V 8 8 µA
Input leakage current at CLKIN 25 25
ROUT Output impedance VDD = 3.3 V 45 Ω
VDD = 2.5 V 60
fOUT Output frequency VDD = 3 V to 3.6 V DC 250 MHz
VDD = 2.3 V to 2.7 V DC 180
OUTPUT PARAMETERS FOR VDD = 3.3 V ± 0.3 V
VOH High-level output voltage VDD = 3 V, IOH = –0.1 mA 2.9 V
VDD = 3 V, IOH = –8 mA 2.5
VDD = 3 V, IOH = –12 mA 2.2
VOL Low-level output voltage VDD = 3 V, IOL = 0.1 mA 0.1 V
VDD = 3 V, IOL = 8 mA 0.5
VDD = 3 V, IOL = 12 mA 0.8
OUTPUT PARAMETERS FOR VDD = 2.5 V ± 0.2 V
VOH High-level output voltage VDD = 2.3 V, IOH = –0.1 mA 2.2 V
VDD = 2.3 V, IOH = –8 mA 1.7
VOL Low-level output voltage VDD = 2.3 V, IOL = 0.1 mA 0.1 V
VDD = 2.3 V, IOL = 8 mA 0.5
All typical values are at respective nominal VDD. For switching characteristics, outputs are terminated to 50 Ω to VDD/2 (see Figure 3).
For dynamic IDD over frequency see and Figure 1.
This is the formula for the power dissipation calculation (see and the Power Considerations section).
Ptot = Pstat + Pdyn + PCload [W]
Pstat = VDD × IDD [W]
Pdyn = CPD × VDD2 × ƒ [W]
PCload = Cload × VDD2 × ƒ × n [W]
n = Number of switching output pins
tsk(p) depends on output rise- and fall-time (tr/tf). The output duty-cycle can be calculated: odc = (tw(OUT) ± tsk(p))/tperiod; tw(OUT) is pulse-width of output waveform and tperiod is 1/fOUT.
Parameter is specified by characterization. Not tested in production.

Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OUTPUT PARAMETERS FOR VDD = 3.3 V ± 0.3 V
tPLH, tPHL Propagation delay CLKIN to Yn 0.8 2.0 ns
tsk(o) Output skew Equal load of each output 50 ps
tr/tf Rise and fall time 20%–80% (VOH - VOL) 0.3 0.8 ns
tDIS Output disable time 1G to Yn 6 ns
tEN Output enable time 1G to Yn 6 ns
tsk(p) Pulse skew ;
tPLH(Yn) – tPHL(Yn) (4)
To be measured with input duty cycle of 50% 180 ps
tsk(pp) Part-to-part skew Under equal operating conditions for two parts 0.5 ns
tjitter Additive jitter rms(5) 12 kHz to 20 MHz, fOUT = 250 MHz 100 fs
OUTPUT PARAMETERS FOR VDD = 2.5 V ± 0.2 V
tPLH, tPHL Propagation delay CLKIN to Yn 1 2.6 ns
tsk(o) Output skew Equal load of each output 50 ps
tr/tf Rise and fall time 20%–80% reference point 0.3 1.2 ns
tDIS Output disable time 1G to Yn 10 ns
tEN Output enable time 1G to Yn 10 ns
tsk(p) Pulse skew ;
tPLH(Yn) – tPHL(Yn) (4)
To be measured with input duty cycle of 50% 220 ps
tsk(pp) Part-to-part skew Under equal operating conditions for two parts 1.2 ns
tjitter Additive jitter rms(5) 12 kHz to 20 MHz, fOUT = 180 MHz 350 fs

Typical Characteristics

CDCLVC1102 CDCLVC1103 CDCLVC1104 CDCLVC1106 CDCLVC1108 CDCLVC1110 CDCLVC1112 pwr2_f_cas895.gif Figure 1. Device Power Consumption vs Clock Frequency
(Load 50 Ω into VDD/2; 2 pF, 8 pF; Per Output)
CDCLVC1102 CDCLVC1103 CDCLVC1104 CDCLVC1106 CDCLVC1108 CDCLVC1110 CDCLVC1112 Idyn2_f_cas895.gif Figure 2. Dynamic Supply Current vs Clock Frequency
(CPD = 4.5 pF, No Load; Per Output)