SCAS898B May   2010  – October 2016 CDCLVD1204

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 LVDS Output Termination
      2. 8.4.2 Input Termination
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VCC –0.3 2.8 V
Input voltage, VI –0.2 VCC + 0.2 V
Output voltage, VO –0.2 VCC + 0.2 V
Driver short circuit current , IOSD See(2)
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The output can handle the permanent short.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) >3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) >1000
(1) Human Body Model, 1.5 kΩ, 100 pF
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VCC Device supply voltage 2.375 2.5 2.625 V
TA Ambient temperature –40 85 °C

6.4 Thermal Information

THERMAL METRIC(1) CDCLVD1204 UNIT
RGT (VQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 51.3 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 85.4 °C/W
RθJB Junction-to-board thermal resistance 20.1 °C/W
ψJT Junction-to-top characterization parameter 1.3 °C/W
ψJB Junction-to-board characterization parameter 19.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

VCC = 2.375 V to 2.625 V and TA = –40°C to 85°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IN_SEL CONTROL
VdI3 3-state input Open 0.5 × VCC V
VdIH Input high voltage 0.7 × VCC V
VdIL Input low voltage 0.2 × VCC V
IdIH Input high current VCC = 2.625 V, VIH = 2.625 V 30 µA
IdIL Input low current VCC = 2.625 V, VIL = 0 V –30 µA
Rpull(IN_SEL) Input pullup or pulldown resistor 200
2.5-V LVCMOS INPUT (See Figure 5)
fIN Input frequency 200 MHz
Vth Input threshold voltage External threshold voltage applied to complementary input 1.1 1.5 V
VIH Input high voltage Vth + 0.1 VCC V
VIL Input low voltage 0 Vth – 0.1 V
IIH Input high current VCC = 2.625 V, VIH = 2.625 V 10 µA
IIL Input low current VCC = 2.625 V, VIL = 0 V –10 µA
ΔV/ΔT Input edge rate 20% to 80% 1.5 V/ns
CIN Input capacitance 2.5 pF
DIFFERENTIAL INPUT
fIN Input frequency Clock input 800 MHz
VIN, DIFF Differential input voltage
peak-to-peak
VICM = 1.25 V 0.3 1.6 VPP
VICM Input common mode voltage VIN, DIFF, PP > 0.4 V 1 VCC – 0.3 V
IIH Input high current VCC = 2.625 V, VIH = 2.625 V 10 µA
IIL Input low current VCC = 2.625 V, VIL = 0 V –10 µA
ΔV/ΔT Input edge rate 20% to 80% 0.75 V/ns
CIN Input capacitance 2.5 pF
LVDS OUTPUT
|VOD| Differential output voltage magnitude VIN, DIFF, PP = 0.3 V,RL = 100 Ω 250 450 mV
ΔVOD Change in differential output voltage magnitude VIN, DIFF, PP = 0.3 V,RL = 100 Ω –15 15 mV
VOC(SS) Steady-state common mode
output voltage
VIN, DIFF, PP = 0.3 V,RL = 100 Ω 1.1 1.375 V
ΔVOC(SS) Steady-state common mode
output voltage
VIN, DIFF, PP = 0.6 V,RL = 100 Ω –15 15 mV
Vring Output overshoot and undershoot Percentage of output amplitude VOD 10%
VOS Output AC common mode VIN, DIFF, PP = 0.6 V, RL = 100 Ω 25 70 mVPP
IOS Short-circuit output current VOD = 0 V ±24 mA
tPD Propagation delay VIN, DIFF, PP = 0.3 V 1.5 2.5 ns
tSK, PP Part-to-part skew 600 ps
tSK, O Output skew 20 ps
tSK,P Pulse skew 50% duty cycle input, crossing-point-to-crossing-point distortion –50 50 ps
tRJIT Random additive jitter 50% duty cycle input,
edge speed = 0.75 V/ns,
10 kHz to 20 MHz
0.3 ps, RMS
tR/tF Output rise and fall time 20% to 80%,100 Ω, 5 pF 50 300 ps
ICCSTAT Static supply current Outputs unterminated, f = 0 Hz 17 28 mA
ICC100 Supply current All outputs, RL = 100 Ω,
f = 100 MHz
40 58 mA
ICC800 Supply current All outputs, RL = 100 Ω,
f = 800 MHz
60 80 mA
VAC_REF Reference output voltage VCC = 2.5 V, Iload = 100 µA 1.1 1.25 1.35 V

6.6 Timing Requirements

MIN NOM MAX UNIT
ADDITIVE PHASE NOISE FOR 100-MHZ CLOCK
phn100 Phase noise at 100 Hz offset –132.9 dBc/Hz
phn1k Phase noise at 1 kHz offset –138.8 dBc/Hz
phn10k Phase noise at 10 kHz offset –147.4 dBc/Hz
phn100k Phase noise at 100 kHz offset –153.6 dBc/Hz
phn1M Phase noise at 1 MHz offset –155.2 dBc/Hz
phn10M Phase noise at 10 MHz offset –156.2 dBc/Hz
phn20M Phase noise at 20 MHz offset –156.6 dBc/Hz
tRJIT Random additive jitter from 10 kHz to 20 MHz 171 fs, RMS
ADDITIVE PHASE NOISE FOR 737.27-MHZ CLOCK
phn100 Phase noise at 100 Hz offset –80.2 dBc/Hz
phn1k Phase noise at 1 kHz offset –114.3 dBc/Hz
phn10k Phase noise at 10 kHz offset –138 dBc/Hz
phn100k Phase noise at 100 kHz offset –143.9 dBc/Hz
phn1M Phase noise at 1 MHz offset –145.2 dBc/Hz
phn10M Phase noise at 10 MHz offset –146.5 dBc/Hz
phn20M Phase noise at 20 MHz offset –146.6 dBc/Hz
tRJIT Random additive jitter from 10 kHz to 20 MHz 65 fs, RMS

6.7 Typical Characteristics

CDCLVD1204 noise_f_cas898.gif

NOTE:

Input clock RMS jitter is 32 fs from 10 kHz to 20 MHz and additive RMS jitter is 152 fs, TA = 25°C, and VCC = 2.5 V
Figure 1. 100-MHz Input and Output Phase Noise Plot
CDCLVD1204 Vod_v_Freq_scas897.gif
Figure 2. Differential Output Voltage vs Frequency