7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
|
MIN |
MAX |
UNIT |
Supply voltage, VA |
|
6.5 |
V |
Voltage on any input pin |
–0.3 |
6.5 |
V |
Input current at any pin(4) |
|
10 |
mA |
Package input current(4) |
|
20 |
mA |
Power consumption at TA = 25°C |
See(5) |
|
Junction temperature, TJ |
|
150 |
°C |
Storage temperature, Tstg |
–65 |
150 |
°C |
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(4) When the input voltage at any pin exceeds 5.5 V or is less than GND, the current at that pin must be limited to 10 mA. The 20-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to two.
(5) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax − TA) / RθJA. The values for maximum power dissipation is reached only when the device is operated in a severe fault condition (for example, when input or output pins are driven beyond the operating ratings, or the power supply polarity is reversed).
7.2 ESD Ratings
|
VALUE |
UNIT |
V(ESD) |
Electrostatic discharge |
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2) |
±2500 |
V |
Machine model (MM) |
±250 |
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) Human-body model is 100-pF capacitor discharged through a 1.5-kΩ resistor. Machine model is 220 pF discharged through 0 Ω.
7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)(1)
|
MIN |
MAX |
UNIT |
Operating temperature, TA |
–40 |
105 |
°C |
Supply voltage, VA |
2.7 |
5.5 |
V |
Reference voltage, VREFIN |
1 |
VA |
V |
Digital input voltage(2) |
0 |
5.5 |
V |
Output load |
0 |
1500 |
pF |
SCLK frequency |
|
Up to 40 |
MHz |
(1) All voltage are measured with respect to GND = 0 V, unless otherwise specified.
(2) The inputs are protected as shown below. Input voltage magnitudes up to 5.5 V, regardless of V
A, does not cause errors in the conversation result. For example, if V
A is 3 V, the digital input pins can be driven with a 5-V logic device.
7.5 Electrical Characteristics
The following specifications apply for VA = 2.7 V to 5.5 V, VREFIN = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 3 to 252. All limits are at TA = 25°C, unless otherwise specified.(1)
PARAMETER |
TEST CONDITIONS |
MIN |
TYP(2) |
MAX |
UNIT |
STATIC PERFORMANCE |
|
Resolution |
TMIN ≤ TA ≤ TMAX |
8 |
|
|
Bits |
|
Monotonicity |
TMIN ≤ TA ≤ TMAX |
8 |
|
|
Bits |
INL |
Integral non-linearity |
TA = 25°C |
|
±0.14 |
|
LSB |
TMIN ≤ TA ≤ TMAX |
|
|
±0.5 |
DNL |
Differential non-linearity |
VA = 2.7 V to 5.5 V |
TA = 25°C |
Max |
|
0.04 |
|
LSB |
Min |
|
−0.02 |
|
TMIN ≤ TA ≤ TMAX |
−0.13 |
|
0.18 |
ZE |
Zero code error |
IOUT = 0 |
TA = 25°C |
|
4 |
|
mV |
TMIN ≤ TA ≤ TMAX |
|
|
15 |
FSE |
Full-scale error |
IOUT = 0 |
TA = 25°C |
|
−0.1 |
|
%FSR |
TMIN ≤ TA ≤ TMAX |
|
|
−0.75 |
GE |
Gain error |
All ones Loaded to DAC register |
TA = 25°C |
|
−0.2 |
|
%FSR |
TMIN ≤ TA ≤ TMAX |
|
−1 |
|
ZCED |
Zero code error drift |
|
|
−20 |
|
µV/°C |
TC GE |
Gain error tempco |
VA = 3 V |
|
−0.7 |
|
ppm/°C |
VA = 5 V |
|
–1 |
|
OUTPUT CHARACTERISTICS |
|
Output voltage(3) |
TMIN ≤ TA ≤ TMAX |
0 |
|
VREFIN |
V |
IOZ |
High-impedance output leakage current(3) |
TMIN ≤ TA ≤ TMAX |
|
|
±1 |
µA |
ZCO |
Zero code output |
VA = 3 V, IOUT = 200 µA |
|
1.3 |
|
mV |
VA = 3 V, IOUT = 1 mA |
|
6 |
|
VA = 5 V, IOUT = 200 µA |
|
7 |
|
VA = 5 V, IOUT = 1 mA |
|
10 |
|
FSO |
Full-scale output |
VA = 3 V, IOUT = 200 µA |
|
2.984 |
|
V |
VA = 3 V, IOUT = 1 mA |
|
2.934 |
|
VA = 5 V, IOUT = 200 µA |
|
4.989 |
|
VA = 5 V, IOUT = 1 mA |
|
4.958 |
|
IOS |
Output short-circuit current (source) |
VA = 3 V, VOUT = 0 V, Input Code = FFh |
|
–56 |
|
mA |
VA = 5 V, VOUT = 0 V, Input Code = FFh |
|
–69 |
|
Output short-circuit current (sink) |
VA = 3 V, VOUT = 3 V, Input Code = 00h |
|
52 |
|
mA |
VA = 5 V, VOUT = 5 V, Input Code = 00h |
|
75 |
|
IO |
Continuous output current(3) |
Available on each DAC output |
TMIN ≤ TA ≤ TMAX |
|
|
11 |
mA |
CL |
Maximum load capacitance |
RL = ∞ |
|
1500 |
|
pF |
RL = 2 kΩ |
|
1500 |
|
ZOUT |
DC output impedance |
|
|
7.5 |
|
Ω |
REFERENCE INPUT CHARACTERISTICS |
VREFIN |
Input range minimum |
TA = 25°C |
|
0.2 |
|
V |
TMIN ≤ TA ≤ TMAX |
1 |
|
|
Input range maximum |
TMIN ≤ TA ≤ TMAX |
|
|
VA |
Input impedance |
|
|
60 |
|
kΩ |
LOGIC INPUT CHARACTERISTICS |
IIN |
Input current(3) |
TMIN ≤ TA ≤ TMAX |
|
|
±1 |
µA |
VIL |
Input low voltage(3) |
VA = 3 V |
TA = 25°C |
|
0.9 |
|
V |
TMIN ≤ TA ≤ TMAX |
|
|
0.6 |
VA = 5 V |
TA = 25°C |
|
1.5 |
|
TMIN ≤ TA ≤ TMAX |
|
|
0.8 |
VIH |
Input high voltage(3) |
VA = 3 V |
TA = 25°C |
|
1.4 |
|
V |
TMIN ≤ TA ≤ TMAX |
2.1 |
|
|
VA = 5 V |
TA = 25°C |
|
2.1 |
|
TMIN ≤ TA ≤ TMAX |
2.4 |
|
|
CIN |
Input capacitance(3) |
TMIN ≤ TA ≤ TMAX |
|
|
3 |
pF |
POWER REQUIREMENTS |
VA |
Supply voltage minimum |
TMIN ≤ TA ≤ TMAX |
2.7 |
|
|
V |
Supply voltage maximum |
TMIN ≤ TA ≤ TMAX |
|
|
5.5 |
IN |
Normal supply current (output unloaded) |
fSCLK = 30 MHz |
VA = 2.7 V to 3.6 V |
TA = 25°C |
|
210 |
|
µA |
TMIN ≤ TA ≤ TMAX |
|
|
270 |
VA = 4.5 V to 5.5 V |
TA = 25°C |
|
320 |
|
TMIN ≤ TA ≤ TMAX |
|
|
410 |
fSCLK = 0 |
VA = 2.7 V to 3.6 V |
|
190 |
|
VA = 4.5 V to 5.5 V |
|
290 |
|
IPD |
Power down supply current (output unloaded, SYNC = DIN = 0 V after PD mode loaded) |
All PD Modes(3) |
VA = 2.7 V to 3.6 V |
TA = 25°C |
|
0.1 |
|
µA |
TMIN ≤ TA ≤ TMAX |
|
|
1 |
VA = 4.5 V to 5.5 V |
TA = 25°C |
|
0.15 |
|
µA |
TMIN ≤ TA ≤ TMAX |
|
|
1 |
PN |
Normal supply power (output unloaded) |
fSCLK = 30 MHz |
VA = 2.7 V to 3.6 V |
TA = 25°C |
|
0.6 |
|
mW |
TMIN ≤ TA ≤ TMAX |
|
|
1 |
VA = 4.5 V to 5.5 V |
TA = 25°C |
|
1.6 |
|
TMIN ≤ TA ≤ TMAX |
|
|
2.3 |
fSCLK = 0 |
VA = 2.7 V to 3.6 V |
|
0.6 |
|
VA = 4.5 V to 5.5 V |
|
1.5 |
|
PPD |
Power down supply current (output unloaded, SYNC = DIN = 0 V after PD mode loaded) |
All PD Modes(3) |
VA = 2.7 V to 3.6 V |
TA = 25°C |
|
0.3 |
|
µW |
TMIN ≤ TA ≤ TMAX |
|
|
3.6 |
VA = 4.5 V to 5.5 V |
TA = 25°C |
|
0.8 |
|
TMIN ≤ TA ≤ TMAX |
|
|
5.5 |
(1) To ensure accuracy, it is required that VA and VREFIN be well bypassed.
(2) Typical figures are at TJ = 25°C, and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(3) This parameter is specified by design or characterization and is not tested in production.
7.6 Timing Requirements
The following specifications apply for VA = +2.7V to +5.5V, VREFIN = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 3 to 252. All other limits are at TA = 25°C, unless otherwise specified. (1)
|
MIN |
TYP |
MAX |
UNIT |
fSCLK |
SCLK frequency |
TA = 25°C |
|
40 |
|
MHz |
TMIN ≤ TA ≤ TMAX |
|
|
30 |
ts |
Output voltage settling time(2) |
40h to C0h code change RL = 2 kΩ, CL = 200 pF |
TA = 25°C |
|
3 |
|
µs |
TMIN ≤ TA ≤ TMAX |
|
|
4.5 |
SR |
Output slew rate |
|
|
1 |
|
V/µs |
|
Glitch Impulse |
Code change from 80h to 7Fh |
|
12 |
|
nV-sec |
|
Digital feedthrough |
|
|
0.5 |
|
nV-sec |
|
Digital crosstalk |
|
|
1 |
|
nV-sec |
|
DAC-to-DAC crosstalk |
|
|
3 |
|
nV-sec |
|
Multiplying bandwidth |
VREFIN = 2.5 V ± 0.1 Vpp |
|
160 |
|
kHz |
|
Total harmonic distortion |
VREFIN = 2.5 V ± 1 Vpp input frequency = 10 kHz |
|
70 |
|
dB |
tWU |
Wake-up time |
VA = 3 V |
|
6 |
|
µs |
VA = 5 V |
|
39 |
|
1/fSCLK |
SCLK cycle time |
TA = 25°C |
|
25 |
|
ns |
TMIN ≤ TA ≤ TMAX |
33 |
|
|
tCH |
SCLK high time |
TA = 25°C |
|
7 |
|
ns |
TMIN ≤ TA ≤ TMAX |
10 |
|
|
tCL |
SCLK low time |
TA = 25°C |
|
7 |
|
ns |
TMIN ≤ TA ≤ TMAX |
10 |
|
|
tSS |
SYNC setup time prior to SCLK falling edge |
TA = 25°C |
|
4 |
|
ns |
TMIN ≤ TA ≤ TMAX |
10 |
|
|
tDS |
Data setup time prior to SCLK falling edge |
TA = 25°C |
|
1.5 |
|
ns |
TMIN ≤ TA ≤ TMAX |
3.5 |
|
|
tDH |
Data hold time after SCLK falling edge |
TA = 25°C |
|
1.5 |
|
ns |
TMIN ≤ TA ≤ TMAX |
3.5 |
|
|
tCFSR |
SCLK fall prior to rise of SYNC |
TA = 25°C |
|
0 |
|
ns |
TMIN ≤ TA ≤ TMAX |
3 |
|
|
tSYNC |
SYNC high time |
TA = 25°C |
|
6 |
|
ns |
TMIN ≤ TA ≤ TMAX |
10 |
|
|
(1) Typical figures are at TJ = 25°C, and represent most likely parametric norms. Test limits are specified to AOQL (Average Outgoing Quality Level).
(2) This parameter is specified by design or characterization and is not tested in production.