SNAS424D August   2007  – April 2016 DAC088S085

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 AC and Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DAC Architecture
      2. 8.3.2 Output Amplifiers
      3. 8.3.3 Reference Voltage
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Power-Down Modes
    5. 8.5 Programming
      1. 8.5.1 Serial Interface
      2. 8.5.2 Daisy Chain Operation
      3. 8.5.3 Serial Input Register
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Examples Programming the DAC088S085
        1. 9.1.1.1 Updating DAC Outputs Simultaneously
        2. 9.1.1.2 Updating DAC Outputs Independently
      2. 9.1.2 Bipolar Operation
      3. 9.1.3 Variable Current Source Output
      4. 9.1.4 DSP and Microprocessor Interfacing
        1. 9.1.4.1 ADSP-2101 and ADSP2103 Interfacing
        2. 9.1.4.2 80C51 and 80L51 Interface
        3. 9.1.4.3 68HC11 Interface
        4. 9.1.4.4 Microwire Interface
      5. 9.1.5 Industrial Application
    2. 9.2 Typical Applications
      1. 9.2.1 ADC Reference
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Programmable Attenuator
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curve
    3. 9.3 Do's and Don'ts
  10. 10Power Supply Recommendations
    1. 10.1 Using References as Power Supplies
      1. 10.1.1 LM4132
      2. 10.1.2 LM4050
      3. 10.1.3 LP3985
      4. 10.1.4 LP2980
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Specification Definitions
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(5)
MIN MAX UNIT
Supply voltage, VA 6.5 V
Voltage on any input pin –0.3 6.5 V
Input current at any pin(3) 10 mA
Package input current(3) 30 mA
Power Consumption at TA = 25°C See(4)
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(3) When the input voltage at any pin exceeds 5.5 V or is less than GND, the current at that pin must be limited to 10 mA. The 30-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to three.
(4) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax – TA) / RθJA. The values for maximum power dissipation is reached only when the device is operated in a severe fault condition (for example, when input or output pins are driven beyond the operating ratings, or the power supply polarity is reversed). Such conditions must always be avoided.
(5) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±250
(1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Operating temperature, TA –40 125 °C
Supply voltage, VA 2.7 5.5 V
Reference voltage, VREF1,2 0.5 VA V
Digital input voltage(2) 0 5.5 V
Output load 0 1500 pF
SCLK frequency 40 MHz
(1) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(2) The inputs are protected as shown below. Input voltage magnitudes up to 5.5 V, regardless of VA, does not cause errors in the conversion result. For example, if VA is 3 V, the digital input pins can be driven with a 5 V logic device.
DAC088S085 30031304.gif

7.4 Thermal Information

THERMAL METRIC(1)(2) DAC088S085 UNIT
PW (TSSOP) RGH (WQFN)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 130 38 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 32 21 °C/W
RθJB Junction-to-board thermal resistance 44.2 9.8 °C/W
ψJT Junction-to-top characterization parameter 2 0.2 °C/W
ψJB Junction-to-board characterization parameter 43.5 9.8 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Soldering process must comply with Texas Instruments' Reflow Temperature Profile specifications. See http://www.ti.com/packaging. Reflow temperature profiles are different for lead-free packages.

7.5 Electrical Characteristics

The following specifications apply for VA = 2.7 V to 5.5 V, VREF1 = VREF2 = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 3 to 252. Typical values apply for TA = 25°C; minimum and maximum limits apply for TA = –40°C to 125°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
STATIC PERFORMANCE
Resolution 8 Bits
Monotonicity 8 Bits
INL Integral nonlinearity ±0.12 ±0.5 LSB
DNL Differential nonlinearity 0.03 0.15 LSB
–0.1 –0.02
ZE Zero code error IOUT = 0 5 15 mV
FSE Full-scale error IOUT = 0 –0.1 –0.75 %FSR
GE Gain error –0.2 –1 %FSR
ZCED Zero code error drift –20 µV/°C
TC GE Gain error tempco –1 ppm/°C
OUTPUT CHARACTERISTICS
Output voltage range 0 VREF1,2 V
IOZ High-impedance output leakage current(1) ±1 µA
ZCO Zero code output VA = 3 V, IOUT = 200 µA 10 mV
VA = 3 V, IOUT = 1 mA 45
VA = 5 V, IOUT = 200 µA 8
VA = 5 V, IOUT = 1 mA 34
FSO Full scale output VA = 3 V, IOUT = 200 µA 2.984 V
VA = 3 V, IOUT = 1 mA 2.933
VA = 5 V, IOUT = 200 µA 4.987
VA = 5 V, IOUT = 1 mA 4.955
IOS Output short circuit current (source) VA = 3 V, VOUT = 0 V, Input Code = FFh –50 mA
VA = 5 V, VOUT = 0 V, Input Code = FFh –60
IOS Output short circuit current (sink) VA = 3 V, VOUT = 3 V, Input Code = 00h 50 mA
VA = 5 V, VOUT = 5 V, Input Code = 00h 70
IO Continuous output current per channel(1) TA = 105°C 10 mA
TA = 125°C 6.5
CL Maximum load capacitance RL = ∞ 1500 pF
RL = 2 kΩ 1500
ZOUT DC output impedance 8 Ω
REFERENCE INPUT CHARACTERISTICS
VREF1,2 input range 2.7 0.5 VA V
Input impedance 30
LOGIC INPUT CHARACTERISTICS
IIN Input Current(1) ±1 µA
VIL Input low voltage VA = 2.7 V to 3.6 V 1 0.6 V
VA = 4.5 V to 5.5 V 1.1 0.8
VIH Input high voltage VA = 2.7 V to 3.6 V 2.1 1.4 V
VA = 4.5 V to 5.5 V 2.4 2
CIN Input Capacitance(1) 3 pF
POWER REQUIREMENTS
VA Supply voltage 2.7 5.5 V
IN Normal supply current for supply pin VA fSCLK = 30 MHz, output unloaded VA = 2.7 V to 3.6 V 460 575 µA
VA = 4.5 V to 5.5 V 650 840
Normal supply current for VREF1 or VREF2 fSCLK = 30 MHz, output unloaded VA = 2.7 V to 3.6 V 95 135
VA = 4.5 V to 5.5 V 160 225
IST Static supply current for supply pin VA fSCLK = 0, output unloaded VA = 2.7 V to 3.6 V 370 µA
VA = 4.5 V to 5.5 V 440
Static supply current for VREF1 or VREF2 fSCLK = 0, output unloaded VA = 2.7 V to 3.6 V 95
VA = 4.5 V to 5.5 V 160
IPD Total power down supply current for all PD Modes(1) fSCLK = 30 MHz, SYNC = VA, and
DIN = 0 V after PD mode loaded
VA = 2.7 V to 3.6 V 0.2 1.5 µA
VA = 4.5 V to 5.5 V 0.5 3
fSCLK = 0, SYNC = VA, and
DIN = 0 V after PD mode loaded
VA = 2.7 V to 3.6 V 0.1 1
VA = 4.5 V to 5.5 V 0.2 2
PN Total power consumption (output unloaded) fSCLK = 30 MHz, output unloaded VA = 2.7 V to 3.6 V 1.95 3 mW
VA = 4.5 V to 5.5 V 4.85 7.1
fSCLK = 0, output unloaded VA = 2.7 V to 3.6 V 1.68
VA = 4.5 V to 5.5 V 3.8
PPD Total power consumption in all PD Modes(1) fSCLK = 30 MHz, SYNC = VA, and
DIN = 0 V after PD mode loaded
VA = 2.7 V to 3.6 V 0.6 5.4 µW
VA = 4.5 V to 5.5 V 2.5 16.5
fSCLK = 0, SYNC = VA, and
DIN = 0 V after PD mode loaded
VA = 2.7 V to 3.6 V 0.3 3.6
VA = 4.5 V to 5.5 V 1 11

7.6 AC and Timing Requirements

Test limits are specified to AOQL (Average Outgoing Quality Level). Typical values apply for TA = 25°C; minimum and maximum limits apply for TA = –40°C to 125°C, unless otherwise noted.
MIN NOM MAX UNIT
fSCLK SCLK frequency 40 30 MHz
ts Output voltage settling time(1) 40h to C0h code change,
RL = 2 kΩ, CL = 200 pF
3 4.5 µs
SR Output Slew Rate 1 V/µs
GI Glitch Impulse Code change from 80h to 7Fh 40 nV-sec
DF Digital Feedthrough 0.5 nV-sec
DC Digital Crosstalk 0.5 nV-sec
CROSS DAC-to-DAC crosstalk 1 nV-sec
MBW Multiplying bandwidth VREF1,2 = 2.5 V ± 2 VPP 360 kHz
ONSD Output noise spectral density DAC Code = 80h, 10 kHz 40 nV/√(Hz)
ON Output noise BW = 30 kHz 14 µV
tWU Wake-up time VA = 3 V 3 µs
VA = 5 V 20
1/fSCLK SCLK cycle time 33 25 ns
tCH SCLK high time 10 7 ns
tCL SCLK low time 10 7 ns
tSS SYNC set-up time before SCLK falling edge TA = 25°C 3 1/fSCLK – 3 ns
TA = –40°C to 125°C 10
tDS Data set-up time before SCLK falling edge 2.5 1 ns
tDH Data hold time after SCLK falling edge 2.5 1 ns
tSH SYNC hold time after the 16th
falling edge of SCLK
TA = 25°C 0 1/fSCLK – 3 ns
TA = –40°C to 125°C 3
tSYNC SYNC high time 15 5 ns
(1) This parameter is specified by design or characterization and is not tested in production.
DAC088S085 30031306.gif Figure 1. Serial Timing Diagram

7.7 Typical Characteristics

VA = 2.7 V to 5.5 V, VREF1,2 = VA, fSCLK = 30 MHz, TA = 25°C, unless otherwise stated
DAC088S085 30031305.gif Figure 2. I/O Transfer Characteristic
DAC088S085 30031355.gif Figure 4. DNL vs Code
DAC088S085 30031324.png Figure 6. INL and DNL vs fSCLK
DAC088S085 30031327.png Figure 8. INL and DNL vs Temperature
DAC088S085 30031331.png Figure 10. Zero Code Error vs VREF
DAC088S085 30031336.png Figure 12. Zero Code Error vs Temperature
DAC088S085 30031332.png Figure 14. Full-Scale Error vs VREF
DAC088S085 30031339.png Figure 16. Full-Scale Error vs Temperature
DAC088S085 30031345.png Figure 18. IVA vs Temperature
DAC088S085 30031335.png Figure 20. IVREF vs Temperature
DAC088S085 30031346.png Figure 22. Glitch Response
DAC088S085 30031338.png Figure 24. DAC-to-DAC Crosstalk
DAC088S085 30031350.png Figure 26. Multiplying Bandwidth
DAC088S085 30031352.png Figure 3. INL vs Code
DAC088S085 30031357.png Figure 5. INL and DNL vs VREF
DAC088S085 30031322.png Figure 7. INL and DNL vs VA
DAC088S085 30031330.png Figure 9. Zero Code Error vs VA
DAC088S085 30031334.png Figure 11. Zero Code Error vs fSCLK
DAC088S085 30031337.png Figure 13. Full-Scale Error vs VA
DAC088S085 30031333.png Figure 15. Full-Scale Error vs fSCLK
DAC088S085 30031344.png Figure 17. IVA vs VA
DAC088S085 30031325.png Figure 19. IVREF vs VREF
DAC088S085 30031328.png Figure 21. Settling Time
DAC088S085 30031351.png Figure 23. Wake-Up Time
DAC088S085 30031347.png Figure 25. Power-On Reset