ZHCSPG5 December   2021 DAC11001B

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Timing Requirements: Write, 4.5 V ≤ DVDD ≤ 5.5 V
    7. 6.7  Timing Requirements: Write, 2.7 V ≤ DVDD < 4.5 V
    8. 6.8  Timing Requirements: Read and Daisy-Chain Write, 4.5 V ≤ DVDD ≤ 5.5 V
    9. 6.9  Timing Requirements: Read and Daisy-Chain Write, 2.7 V ≤ DVDD < 4.5 V
    10. 6.10 Timing Diagrams
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Digital-to-Analog Converter Architecture
      2. 7.3.2 External Reference
      3. 7.3.3 Output Buffers
      4. 7.3.4 Internal Power-On Reset (POR)
      5. 7.3.5 Temperature Drift and Calibration
      6. 7.3.6 DAC Output Deglitch Circuit
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fast-Settling Mode and THD
      2. 7.4.2 DAC Update Rate Mode
    5. 7.5 Programming
      1. 7.5.1 Daisy-Chain Operation
      2. 7.5.2 CLR Pin Functionality and Software Clear
      3. 7.5.3 Output Update (Synchronous and Asynchronous)
        1. 7.5.3.1 Synchronous Update
        2. 7.5.3.2 Asynchronous Update
      4. 7.5.4 Software Reset Mode
    6. 7.6 Register Map
      1. 7.6.1 NOP Register (address = 00h) [reset = 0x000000h for bits [23:0]]
      2. 7.6.2 DAC-DATA Register (address = 01h) [reset = 0x000000h for bits [23:0]]
      3. 7.6.3 CONFIG1 Register (address = 02h) [reset = 004C80h for bits [23:0]]
      4. 7.6.4 DAC-CLEAR-DATA Register (address = 03h) [reset = 000000h for bits [23:0]]
      5. 7.6.5 TRIGGER Register (address = 04h) [reset = 000000h for bits [23:0]]
      6. 7.6.6 STATUS Register (address = 05h) [reset = 000000h for bits [23:0]]
      7. 7.6.7 CONFIG2 Register (address = 06h) [reset = 000040h for bits [23:0]]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Source Measure Unit (SMU)
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 High-Precision Control Loop
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
      3. 8.2.3 Arbitrary Waveform Generation (AWG)
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
    3. 8.3 System Examples
      1. 8.3.1 Interfacing to a Processor
      2. 8.3.2 Interfacing to a Low-Jitter LDAC Source
      3. 8.3.3 Embedded Resistor Configurations
        1. 8.3.3.1 Minimizing Bias Current Mismatch
        2. 8.3.3.2 2x Gain Configuration
        3. 8.3.3.3 Generating Negative Reference
    4. 8.4 What to Do and What Not to Do
      1. 8.4.1 What to Do
      2. 8.4.2 What Not to Do
    5. 8.5 Initialization Set Up
  9. Power Supply Recommendations
    1. 9.1 Power-Supply Sequencing
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Assembly Effects on Precision
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 接收文档更新通知
    4. 11.4 支持资源
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Internal Power-On Reset (POR)

The DAC11001B incorporates two internal POR circuits for the DVDD, AVDD, IOVDD, VCC, and VSS supplies. The POR signals are ANDed together, so that all supplies must be at the minimum specified values for the device to not be in a reset condition. These POR circuits initialize internal registers, as well as set the analog outputs to a known state, all while the device supplies are ramping. All registers are reset to default values. The DAC11001B powers on with the DAC registers set to zero scale. The DAC output can be powered down by writing 1 to PDN (bit 4, address 02h). Typically, the POR function can be ignored as long as the device supplies power up and maintain the specified minimum voltage levels. However, a supply drop or brownout can trigger an internal POR reset event. Figure 7-2 represents the internal POR threshold levels for the DVDD, AVDD, IOVDD, VCC, and VSS supplies.

GUID-5589B1DD-06F0-4450-BB3A-99A730AFF3CA-low.gifFigure 7-2 Relevant Voltage Levels for the POR Circuit

For the DVDD supply, no internal POR occurs for nominal supply operation from 2.7 V (supply minimum) to 5.5 V (supply maximum). For a DVDD supply region between 2.5 V (undefined operation threshold) and 1.6 V (POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a DVDD supply less than 1.6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 1.6 V for approximately 1 ms.

For the AVDD supply, no internal POR occurs for nominal supply operation from 4.5 V (supply minimum) to 5.5 V (supply maximum). For an AVDD supply region between 4.1 V (undefined operation threshold) and 3.3 V (POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an AVDD supply less than 3.3 V (POR threshold), the internal POR resets as long as the supply voltage is less than 3.3 V for approximately 1 ms.

For the VCC supply, no internal POR occurs for nominal supply operation from 8 V (supply minimum) to 36 V (supply maximum). For VCC supply voltages between 7.5 V (undefined operation threshold) to 6 V (POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VCC supply less than 6 V (POR threshold), the internal POR resets as long as the supply voltage is less than 6 V for approximately 1 ms.

For the VSS supply, no internal POR occurs for nominal supply operation from –3 V (supply minimum) to –18 V (supply maximum). For VSS supply voltages between –2.7 V (undefined operation threshold) to –1.8 V (POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For a VSS supply greater than –1.8 V (POR threshold), the internal POR resets as long as the supply voltage is greater than –1.8 V for approximately 1 ms.

For the IOVDD supply, no internal POR occurs for nominal supply operation from 1.8 V (supply minimum) to 5.5 V (supply maximum). For IOVDD supply voltages between 1.5 V (undefined operation threshold) and 0.8 V (POR threshold), the internal POR circuit may or may not provide a reset over all temperature conditions. For an IOVDD supply less than 0.8 V (POR threshold), the internal POR resets as long as the supply voltage is less than 0.8 V for approximately 1 ms.

In case the DVDD, AVDD, IOVDD, VCC, or VSS supply drops to a level where the internal POR signal is indeterminate, power cycle the device followed by a software reset.