SNAS407H August   2007  – April 2015 DAC128S085

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 AC and Timing Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DAC Architecture
      2. 8.3.2 Output Amplifiers
      3. 8.3.3 Reference Voltage
      4. 8.3.4 Serial Interface
      5. 8.3.5 Daisy-Chain Operation
      6. 8.3.6 DAC Input Data Update Mechanism
      7. 8.3.7 Power-On Reset
      8. 8.3.8 Transfer Characteristic
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Modes
    5. 8.5 Programming
      1. 8.5.1 Programming the DAC128S085
        1. 8.5.1.1 Updating DAC Outputs Simultaneously
        2. 8.5.1.2 Updating DAC Outputs Independently
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Using References as Power Supplies
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Specification Definitions
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(1)
MIN MAX UNIT
Supply Voltage, VA 6.5 V
Voltage on any Input Pin −0.3 6.5 V
Input Current at Any Pin(2) 10 mA
Package Input Current(2) 30 mA
Power Consumption at TA = 25°C See (3)
Junction Temperature 150 °C
Storage Temperature, Tstg −65 150 °C
(1) All voltages are measured with respect to GND = 0 V, unless otherwise specified.
(2) When the input voltage at any pin exceeds 5.5 V or is less than GND, the current at that pin should be limited to 10 mA. The 30-mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 10 mA to three.
(3) The absolute maximum junction temperature (TJmax) for this device is 150°C. The maximum allowable power dissipation is dictated by TJmax, the junction-to-ambient thermal resistance (RθJA), and the ambient temperature (TA), and can be calculated using the formula PDMAX = (TJmax − TA) / RθJA. The values for maximum power dissipation will be reached only when the device is operated in a severe fault condition (for example, when input or output pins are driven beyond the operating ratings, or the power supply polarity is reversed). Such conditions should always be avoided.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2500 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine Model ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Operating Temperature Range −40 ≤ TA ≤ +125 °C
Supply Voltage, VA 2.7 5.5 V
Reference Voltage, VREF1,2 0.5 VA V
Digital Input Voltage(1) 0.0 5.5 V
Output Load 0 1500 pF
SCLK Frequency 40 MHz
(1) The inputs are protected as shown below. Input voltage magnitudes up to 5.5 V, regardless of VA, will not cause errors in the conversion result. For example, if VA is 3 V, the digital input pins can be driven with a 5-V logic device.
DAC128S085 30016904.gif

7.4 Thermal Information

THERMAL METRIC(1) DAC128S085 UNIT
PW (TSSOP) RGH (WQFN)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 98 34 °C/W
RθJA Junction-to-ambient thermal resistance 31 25
RθJA Junction-to-ambient thermal resistance 43 11
φJT Junction-to-top characterization parameter 2 0.2
φJB Junction-to-board characterization parameter 43 11
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

The following specifications apply for VA = 2.7 V to 5.5 V, VREF1 = VREF2 = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 48 to 4047. All limits are at TA = 25°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN(2) TYP MAX(2) UNIT
STATIC PERFORMANCE
Resolution TMIN ≤ TA ≤ TMAX 12 Bits
Monotonicity TMIN ≤ TA ≤ TMAX 12 Bits
INL Integral Non-Linearity ±2 LSB
TMIN ≤ TA ≤ TMAX ±8
DNL Differential Non-Linearity 0.15 LSB
TMIN ≤ TA ≤ TMAX 0.75
−0.09 LSB
TMIN ≤ TA ≤ TMAX −0.4
ZE Zero Code Error IOUT = 0 +5 mV
TMIN ≤ TA ≤ TMAX 15
FSE Full-Scale Error IOUT = 0 −0.1% FSR
TMIN ≤ TA ≤ TMAX −0.75%
GE Gain Error −0.2% FSR
TMIN ≤ TA ≤ TMAX −1 %
ZCED Zero Code Error Drift −20 µV/°C
TC GE Gain Error Tempco −1 ppm/°C
OUTPUT CHARACTERISTICS
Output Voltage Range TMIN ≤ TA ≤ TMAX 0 VREF1,2 V
IOZ High-Impedance Output
Leakage Current(3)
TMIN ≤ TA ≤ TMAX ±1 µA
ZCO Zero Code Output VA = 3 V, IOUT = 200 µA 10 mV
VA = 3 V, IOUT = 1 mA 45 mV
VA = 5 V, IOUT = 200 µA 8 mV
VA = 5 V, IOUT = 1 mA 34 mV
FSO Full Scale Output VA = 3 V, IOUT = 200 µA 2.984 V
VA = 3 V, IOUT = 1 mA 2.933 V
VA = 5 V, IOUT = 200 µA 4.987 V
VA = 5 V, IOUT = 1 mA 4.955 V
IOS Output Short Circuit Current (source)(4) VA = 3 V, VOUT = 0 V,
Input Code = FFFh
−50 mA
VA = 5 V, VOUT = 0 V,
Input Code = FFFh
−60 mA
IOS Output Short Circuit Current (sink)(4) VA = 3 V, VOUT = 3 V,
Input Code = 000h
50 mA
VA = 5 V, VOUT = 5 V,
Input Code = 000h
70 mA
IO Continuous Output Current per channel(3) TA = 105°C
TMIN ≤ TA ≤ TMAX
10 mA
TA = 125°C
TMIN ≤ TA ≤ TMAX
6.5 mA
CL Maximum Load Capacitance RL = ∞ 1500 pF
RL = 2 kΩ 1500 pF
ZOUT DC Output Impedance 8 Ω
REFERENCE INPUT CHARACTERISTICS
VREF1,2 Input Range Minimum 0.5 V
TMIN ≤ TA ≤ TMAX 2.7
Input Range Maximum TMIN ≤ TA ≤ TMAX VA V
Input Impedance 30
LOGIC INPUT CHARACTERISTICS
IIN Input Current(3) TMIN ≤ TA ≤ TMAX ±1 µA
VIL Input Low Voltage VA = 2.7 V to 3.6 V 1 V
TMIN ≤ TA ≤ TMAX 0.6
VA = 4.5 V to 5.5 V 1.1 V
0.8
VIH Input High Voltage VA = 2.7 V to 3.6 V 1.4 V
TMIN ≤ TA ≤ TMAX 2.1
VA = 4.5 V to 5.5 V 2 V
TMIN ≤ TA ≤ TMAX 2.4
CIN Input Capacitance(3) TMIN ≤ TA ≤ TMAX 3 pF
POWER REQUIREMENTS
VA Supply Voltage Minimum TMIN ≤ TA ≤ TMAX 2.7 V
Supply Voltage Maximum TMIN ≤ TA ≤ TMAX 5.5 V
IN Normal Supply Current for supply pin VA fSCLK = 30 MHz,
output unloaded
VA = 2.7 V to 3.6 V 460 µA
TMIN ≤ TA ≤ TMAX 560
VA = 4.5 V to 5.5 V 650 µA
830
Normal Supply Current for VREF1 or VREF2 fSCLK = 30 MHz,
output unloaded
VA = 2.7 V to 3.6 V 95 µA
TMIN ≤ TA ≤ TMAX 130
VA = 4.5 V to 5.5 V 160 µA
220
IST Static Supply Current for supply pin VA fSCLK = 0,
output unloaded
VA = 2.7 V to 3.6 V 370 µA
VA = 4.5 V to 5.5 V 440 µA
Static Supply Current for VREF1 or VREF2 fSCLK = 0,
output unloaded
VA = 2.7 V to 3.6 V 95 µA
VA = 4.5 V to 5.5 V 160 µA
IPD Total Power Down Supply Current for all PD Modes
(3)
fSCLK = 30 MHz, SYNC = VA and DIN = 0V after PD mode loaded VA = 2.7 V to 3.6 V 0.2 µA
1.5
VA = 4.5 V to 5.5 V 0.5 µA
TMIN ≤ TA ≤ TMAX 3
fSCLK = 0, SYNC = VA and DIN = 0V after PD mode loaded VA = 2.7 V to 3.6 V 0.1 µA
TMIN ≤ TA ≤ TMAX 1
VA = 4.5 V to 5.5 V 0.2 µA
TMIN ≤ TA ≤ TMAX 2
PN Total Power Consumption (output unloaded) fSCLK = 30 MHz
output unloaded
VA = 2.7 V to 3.6 V 1.95 mW
TMIN ≤ TA ≤ TMAX 3
VA = 4.5 V to 5.5 V 4.85 mW
TMIN ≤ TA ≤ TMAX 7
fSCLK = 0
output unloaded
VA = 2.7 V to 3.6 V 1.68 mW
VA = 4.5 V to 5.5 V 3.80 mW
PPD Total Power Consumption in all PD Modes,
(3)
fSCLK = 30 MHz, SYNC = VA and DIN = 0V after PD mode loaded VA = 2.7 V to 3.6 V 0.6 µW
TMIN ≤ TA ≤ TMAX 5.4
VA = 4.5V to 5.5V 2.5 µW
TMIN ≤ TA ≤ TMAX 16.5
fSCLK = 0, SYNC = VA and DIN = 0V after PD mode loaded VA = 2.7 V to 3.6 V 0.3 µW
TMIN ≤ TA ≤ TMAX 3.6
VA = 4.5 V to 5.5 V 1 µW
TMIN ≤ TA ≤ TMAX 11

7.6 AC and Timing Characteristics

The following specifications apply for VA = 2.7 V to 5.5 V, VREF1,2 = VA, CL = 200 pF to GND, fSCLK = 30 MHz, input code range 48 to 4047. All limits are at TA = 25°C, unless otherwise specified.
MIN(2) NOM MAX(2) UNIT
fSCLK SCLK Frequency 40 MHz
TMIN ≤ TA ≤ TMAX 30
ts Output Voltage Settling Time
(3)
400h to C00h code change
RL = 2 kΩ, CL = 200 pF
6 µs
TMIN ≤ TA ≤ TMAX 8.5
SR Output Slew Rate 1 V/µs
GI Glitch Impulse Code change from 800h to 7FFh 40 nV-sec
DF Digital Feedthrough 0.5 nV-sec
DC Digital Crosstalk 0.5 nV-sec
CROSS DAC-to-DAC Crosstalk 1 nV-sec
MBW Multiplying Bandwidth VREF1,2 = 2.5 V ± 2 Vpp 360 kHz
THD+N Total Harmonic Distortion Plus Noise VREF1,2 = 2.5 V ± 0.5 Vpp
100 Hz < fIN < 20 kHz
−80 dB
ONSD Output Noise Spectral Density DAC Code = 800 h, 10 kHz 40 nV/sqrt (Hz)
ON Output Noise BW = 30 kHz 14 µV
tWU Wake-Up Time VA = 3 V 3 µsec
VA = 5 V 20 µsec
1/fSCLK SCLK Cycle Time. See Figure 1 25 ns
TMIN ≤ TA ≤ TMAX 33
tCH SCLK High time. See Figure 1 7 ns
TMIN ≤ TA ≤ TMAX 10
tCL SCLK Low Time. See Figure 1 7 ns
TMIN ≤ TA ≤ TMAX 10
tSS SYNC Set-up Time prior to SCLK Falling Edge. See Figure 1 3 1 / fSCLK - 3 ns
TMIN ≤ TA ≤ TMAX 10
tDS Data Set-Up Time prior to SCLK Falling Edge. See Figure 1 1 ns
TMIN ≤ TA ≤ TMAX 2.5
tDH Data Hold Time after SCLK Falling Edge. See Figure 1 1 ns
TMIN ≤ TA ≤ TMAX 2.5
tSH SYNC Hold Time after the 16th falling edge of SCLK. See Figure 1 0 1 / fSCLK - 3 ns
TMIN ≤ TA ≤ TMAX 3
tSYNC SYNC High Time. See Figure 1 5 ns
TMIN ≤ TA ≤ TMAX 15
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Recomended Operating Ratings indicate conditions for which the device is functional, but do not specify specific performance limits. For ensured specifications and test conditions, see Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. Operation of the device beyond the Absolute Maximum Ratings is not recommended.
(2) Test limits are ensured to TI's AOQL (Average Outgoing Quality Level).
(3) This parameter is ensured by design and/or characterization and is not tested in production.
(4) This parameter does not represent a condition which the DAC can sustain continuously. See the continuous output current specification for the maximum DAC output current per channel.
DAC128S085 30016906.gifFigure 1. Serial Timing Diagram

7.7 Typical Characteristics

VA = 2.7 V to 5.5 V, VREF1,2 = VA, fSCLK = 30 MHz, TA = 25°C, unless otherwise stated
DAC128S085 30016952.png
Figure 2. INL vs Code
DAC128S085 30016957.png
Figure 4. INL / DNL vs VREF
DAC128S085 30016922.png
Figure 6. INL / DNL vs VA
DAC128S085 30016930.png
Figure 8. Zero Code Error vs VA
DAC128S085 30016934.png
Figure 10. Zero Code Error vs FSCLK
DAC128S085 30016937.png
Figure 12. Full-Scale Error vs VA
DAC128S085 30016933.png
Figure 14. Full-Scale Error vs FSCLK
DAC128S085 30016944.png
Figure 16. IVA vs VA
DAC128S085 30016925.png
Figure 18. IVREF vs VREF
DAC128S085 30016928.png
Figure 20. Settling Time
DAC128S085 30016951.png
Figure 22. Wake-Up Time
DAC128S085 30016947.png
Figure 24. Power-On Reset
DAC128S085 30016955.png
Figure 3. DNL vs Code
DAC128S085 30016924.png
Figure 5. INL / DNL vs FSCLK
DAC128S085 30016927.png
Figure 7. INL / DNL vs Temperature
DAC128S085 30016931.png
Figure 9. Zero Code Error vs VREF
DAC128S085 30016936.png
Figure 11. Zero Code Error vs Temperature
DAC128S085 30016932.png
Figure 13. Full-Scale Error vs VREF
DAC128S085 30016939.png
Figure 15. Full-Scale Error vs Temperature
DAC128S085 30016945.png
Figure 17. IVA vs Temperature
DAC128S085 30016935.png
Figure 19. IVREF vs Temperature
DAC128S085 30016946.png
Figure 21. Glitch Response
DAC128S085 30016938.png
Figure 23. DAC-to-DAC Crosstalk
DAC128S085 30016950.png
Figure 25. Multiplying Bandwidth