SLAS751D March   2011  – September 2015 DAC34H84

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics - DC Specifications
    6. 6.6  Electrical Characteristics - Digital Specifications
    7. 6.7  Electrical Characteristics - AC Specifications
    8. 6.8  Timing Requirements - Digital Specifications
    9. 6.9  Switching Characteristics - AC Specifications
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Serial Interface
      2. 7.3.2  Data Interface
      3. 7.3.3  Data Format
      4. 7.3.4  Input FIFO
      5. 7.3.5  FIFO Modes of Operation
        1. 7.3.5.1 Dual Sync Sources Mode
        2. 7.3.5.2 Single Sync Source Mode
        3. 7.3.5.3 Bypass Mode
      6. 7.3.6  Clocking Modes
        1. 7.3.6.1 PLL Bypass Mode
        2. 7.3.6.2 PLL Mode
      7. 7.3.7  FIR Filters
      8. 7.3.8  Complex Signal Mixer
        1. 7.3.8.1 Full Complex Mixer
        2. 7.3.8.2 Coarse Complex Mixer
        3. 7.3.8.3 Mixer Gain
        4. 7.3.8.4 Real Channel Upconversion
      9. 7.3.9  Quadrature Modulation Correction (QMC)
        1. 7.3.9.1 Gain and Phase Correction
        2. 7.3.9.2 Offset Correction
        3. 7.3.9.3 Group Delay Correction
      10. 7.3.10 Temperature Sensor
      11. 7.3.11 Data Pattern Checker
      12. 7.3.12 Parity Check Test
        1. 7.3.12.1 32-Bit Parity
        2. 7.3.12.2 Dual 16-Bit Parity
      13. 7.3.13 DAC34H84 Alarm Monitoring
      14. 7.3.14 LVPECL Inputs
      15. 7.3.15 LVDS Inputs
      16. 7.3.16 CMOS Digital Inputs
      17. 7.3.17 Reference Operation
      18. 7.3.18 DAC Transfer Function
      19. 7.3.19 Analog Current Outputs
    4. 7.4 Device Functional Modes
      1. 7.4.1 Multi-Device Synchronization
        1. 7.4.1.1 Multi-Device Synchronization: PLL Bypassed with Dual Sync Sources Mode
        2. 7.4.1.2 Multi-Device Synchronization: PLL Enabled with Dual Sync Sources Mode
        3. 7.4.1.3 Multi-Device Operation: Single Sync Source Mode
    5. 7.5 Programming
      1. 7.5.1 Power-Up Sequence
      2. 7.5.2 Example Start-Up Routine
        1. 7.5.2.1 Device Configuration
        2. 7.5.2.2 PLL Configuration
        3. 7.5.2.3 NCO Configuration
        4. 7.5.2.4 Example Start-Up Sequence
    6. 7.6 Register Map
      1. 7.6.1 Register Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 IF Based LTE Transmitter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Data Input Rate
          2. 8.2.1.2.2 Interpolation
          3. 8.2.1.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Direct Upconversion (Zero IF) LTE Transmitter
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Data Input Rate
          2. 8.2.2.2.2 Interpolation
          3. 8.2.2.2.3 LO Feedthrough and Sideband Correction
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Assembly
    2. 10.2 Layout Examples
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Device Nomenclature
        1. 11.1.2.1 Definition of Specifications
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage range(2) DACVDD, DIGVDD, CLKVDD –0.5 1.5 V
VFUSE –0.5 1.5 V
IOVDD, IOVDD2 –0.5 4 V
AVDD, PLLAVDD –0.5 4 V
Pin voltage range(2) DAB[15..0]P/N, DCD[15..0]P/N, DATACLKP/N, ISTRP/N, PARITYCDP/N, SYNCP/N –0.5 IOVDD + 0.5 V
DACCLKP/N, OSTRP/N –0.5 CLKVDD + 0.5 V
ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TESTMODE, TXENA –0.5 IOVDD2 + 0.5 V
IOUTAP/N, IOUTBP/N, IOUTCP/N, IOUTDP/N –1.0 AVDD + 0.5 V
EXTIO, BIASJ –0.5 AVDD + 0.5 V
LPF –0.5 PLLAVDD + 0.5 V
Peak input current (any input) 20 mA
Peak total input current (all inputs) –30 mA
Operating free-air temperature range, TA: DAC34H84 –40 85 °C
Absolute maximum junction temperature, TJ 150 °C
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Measured with respect to GND.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN NOM MAX UNIT
TJ Recommended operating junction temperature 105 °C
Maximum rated operating junction temperature(1) 125
TA Recommended free-air temperature –40 25 85 °C
(1) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

6.4 Thermal Information

THERMAL METRIC(1) DAC34H84 UNIT
ZAY (NFBGA)
196 BALLS
RθJA Junction-to-ambient thermal resistance 37.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 6.8 °C/W
RθJB Junction-to-board thermal resistance 16.8 °C/W
ψJT Junction-to-top characterization parameter 0.2 °C/W
ψJB Junction-to-board characterization parameter 16.4 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics – DC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20mA (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Resolution 16 Bits
DC ACCURACY
DNL Differential nonlinearity 1 LSB = IOUTFS/216 ±2 LSB
INL Integral nonlinearity ±4 LSB
ANALOG OUTPUT
Coarse gain linearity ±0.04 LSB
Offset error Mid code offset ±0.001 %FSR
Gain error With external reference ±2 %FSR
With internal reference ±2 %FSR
Gain mismatch With internal reference ±2 %FSR
Full scale output current 10 20 30 mA
Output compliance range –0.5 0.6 V
Output resistance 300
Output capacitance 5 pF
REFERENCE OUTPUT
VREF Reference output voltage 1.2 V
Reference output current(2) 100 nA
REFERENCE INPUT
VEXTIO Input voltage range External Reference Mode 0.6 1.2 1.25 V
Input resistance 1
Small signal bandwidth 472 kHz
Input capacitance 100 pF
TEMPERATURE COEFFICIENTS
Offset drift ±1 ppm/°C
Gain drift with external reference ±15 ppm/°C
with internal reference ±30 ppm/°C
Reference voltage drift ±8 ppm/°C
POWER SUPPLY(3)
AVDD, IOVDD, PLLAVDD 3.14 3.3 3.46 V
CLKVDD, DACVDD, DIGVDD 1.14 1.2 1.26 V
IOVDD2 1.71 3.3 3.45 V
PSRR Power supply rejection ratio DC tested ±0.25 %FSR/V
POWER CONSUMPTION
I(AVDD) Analog supply current(4) MODE 1(5)
fDAC = 1.25GSPS, 2x interpolation, Mixer on,
QMC on, invsinc on, PLL enabled, 20mA FS output, IF = 200MHz
135 165 mA
I(DIGVDD) Digital supply current 740 820 mA
I(DACVDD) DAC supply current 40 60 mA
I(CLKVDD) Clock supply current 100 120 mA
P Power dissipation 1500 1750 mW
I(AVDD) Analog supply current(4) MODE 2
fDAC = 1.25GSPS, 2x interpolation, Mixer on,
QMC on, invsinc on, PLL disabled, 20mA FS output, IF = 200MHz
125 mA
I(DIGVDD) Digital supply current 740 mA
I(DACVDD) DAC supply current 45 mA
I(CLKVDD) Clock supply current 75 mA
P Power dissipation 1440 mW
I(AVDD) Analog supply current(4) MODE 3
fDAC = 625MSPS, 2x interpolation, Mixer on,
QMC on, invsinc off, PLL disabled, 20mA FS output, IF = 200MHz
120 mA
I(DIGVDD) Digital supply current 370 mA
I(DACVDD) DAC supply current 25 mA
I(CLKVDD) Clock supply current 45 mA
P Power dissipation 925 mW
I(AVDD) Analog supply current(4) MODE 4
fDAC = 1.25GSPS, 2x interpolation, Mixer on,
QMC on, invsinc on, PLL enabled, Channels A/B/C/D output sleep, IF = 200MHz,
50 mA
I(DIGVDD) Digital supply current 750 mA
I(DACVDD) DAC supply current 40 mA
I(CLKVDD) Clock supply current 100 mA
P Power dissipation 1240 mW
I(AVDD) Analog supply current(4) Mode 5
Power-Down mode: No clock, DAC on sleep mode (clock receiver sleep),
Channels A/B/C/D output sleep, static data pattern
40 mA
I(DIGVDD) Digital supply current 10 mA
I(DACVDD) DAC supply current 5 mA
I(CLKVDD) Clock supply current 15 mA
P Power dissipation 150 mW
I(AVDD) Analog supply current(4) Mode 6
fDAC = 1GSPS, 2x interpolation, Mixer off,
QMC off, invsinc off, PLL enabled, 20mA FS output, IF = 200MHz
140 mA
I(DIGVDD) Digital supply current 360 mA
I(DACVDD) DAC supply current 30 mA
I(CLKVDD) Clock supply current 90 mA
P Power dissipation 1040 mW
I(AVDD) Analog supply current(4) Mode 7
fDAC = 1GSPS, 2x interpolation, Mixer off,
QMC off, invsinc off, PLL disabled, 20mA FS output, IF = 200MHz
120 mA
I(DIGVDD) Digital supply current 370 mA
I(DACVDD) DAC supply current 30 mA
I(CLKVDD) Clock supply current 65 mA
P Power dissipation 960 mW
(1) Measured differentially across IOUTP/N with 25 Ω each to GND.
(2) Use an external buffer amplifier with high impedance input to drive any external load.
(3) To ensure power supply accuracy and to account for power supply filter network loss at operating conditions, the use of the ATEST function in register config27 to check the internal power supply nodes is recommended.
(4) Includes AVDD, PLLAVDD, and IOVDD
(5) PLL operation of 1.25GSPS in Mode 1 is used for maximum power consumption measurement only. Please follow the maximum DAC sample rate (FDAC) guideline in the AC Characteristic Table for proper DAC operation.

6.6 Electrical Characteristics – Digital Specifications

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LVDS INPUTS: DAB[15:0]P/N, DCD[15:0]P/N, DATACLKP/N, ISTRP/N, SYNCP/N, PARITYCDP/N(1)
VA,B+ Logic high differential input voltage threshold 200 mV
VA,B– Logic low differential input voltage threshold –200 mV
VCOM Input Common Mode 1.0 1.2 1.6 V
ZT Internal termination 85 110 135 Ω
CL LVDS Input capacitance 2 pF
fINTERL Interleaved LVDS data transfer rate 1250 MSPS
fDATA Input data rate 625 MSPS
CLOCK INPUT (DACCLKP/N)
Differential voltage(2) 0.4 1.0 V
OUTPUT STROBE (OSTRP/N)
Differential voltage 0.4 1.0 V
CMOS INTERFACE: ALARM, SDO, SDIO, SCLK, SDENB, SLEEP, RESETB, TXENA
VIH High-level input voltage 0.7 x IOVDD2 V
VIL Low-level input voltage 0.3 x IOVDD2 V
IIH High-level input current -40 40 µA
IIL Low-level input current -40 40 µA
CI CMOS Input capacitance 2 pF
VOH ALARM, SDO, SDIO Iload = –100 μA IOVDD2 – 0.2 V
Iload = –2 mA 0.8 x IOVDD2 V
VOL ALARM, SDO, SDIO Iload = 100 μA 0.2 V
Iload = 2 mA 0.5 V
(1) See LVDS Inputs section for terminology.
(2) Driving the clock input with a differential voltage lower than 1 V may result in degraded performance.

6.7 Electrical Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG OUTPUT(1)
fDAC Maximum DAC rate PLL OFF 1250 MSPS
PLL ON 1000
AC PERFORMANCE(2)
SFDR Spurious free dynamic range
(0 to fDAC/2) Tone at 0 dBFS
fDAC = 1.25 GSPS, fOUT = 20 MHz 73 dBc
fDAC = 1.25 GSPS, fOUT = 50 MHz 70
fDAC = 1.25 GSPS, fOUT = 70 MHz 66
IMD3 Third-order two-tone intermodulation distortion
Each tone at –12 dBFS
fDAC = 1.25 MSPS, fOUT = 30 ± 0.5 MHz 87 dBc
fDAC = 1.25 GSPS, fOUT = 50 ± 0.5 MHz 85
fDAC = 1.25 GSPS, fOUT = 100 ± 0.5 MHz 78
NSD Noise Spectral Density(3)
Tone at 0dBFS
fDAC = 1.25 GSPS, fOUT = 10 MHz 160 dBc/Hz
fDAC = 1.25 GSPS, fOUT = 80 MHz 155
ACLR(3) Adjacent channel leakage ratio, single carrier fDAC = 1.2288 GSPS, fOUT = 30.72 MHz 77 dBc
fDAC = 1.2288 GSPS, fOUT = 153.6 MHz 74
Alternate channel leakage ratio, single carrier fDAC = 1.2288 GSPS, fOUT = 30.72 MHz 82
fDAC = 1.2288 GSPS, fOUT = 153.6 MHz 80
Channel Isolation fDAC = 1.25 GSPS, fOUT = 10 MHz 95 dBc
(1) Measured single ended into 50 Ω load.
(2) 4:1 transformer output termination, 50 Ω doubly terminated load
(3) Single carrier, W-CDMA with 3.84 MHz BW, 5-MHz spacing, centered at IF, PAR = 12dB. TESTMODEL 1, 10 ms

6.8 Timing Requirements – Digital Specifications

MIN NOM MAX UNIT
CLOCK INPUT (DACCLKP/N)
Duty cycle 40% 60%
DACCLKP/N input frequency 1250 MHz
OUTPUT STROBE (OSTRP/N)
fOSTR Frequency fOSTR = fDACCLK / (n x 8 x Interp) where n is any positive integer, fDACCLK is DACCLK frequency in MHz fDACCLK /
(8 x interp)
MHz
Duty cycle 50%
DIGITAL INPUT TIMING SPECIFICATIONS
Timing LVDS inputs: D[15:0]P/N, FRAMEP/N, SYNCP/N, PARITYP/N, double edge latching
ts(DATA) Setup time, DAB[15:0]P/N, DCD[15:0]P/N, ISTRP/N, SYNCP/N and PARITYP/N, valid to either edge of DATACLKP/N ISTRP/N and SYNCP/N reset latched only on rising edge of DATACLKP/N Config36 Setting
datadly clkdly
0 0 150 ps
0 1 100
0 2 50
0 3 0
0 4 -50
0 5 -100
0 6 -150
0 7 -200
1 0 200
2 0 250
3 0 300
4 0 350
5 0 400
6 0 450
7 0 500
th(DATA) Hold time, DAB[15:0]P/N, DCD[15:0]P/N, ISTRP/N, SYNCP/N and PARITYP/N, valid after either edge of DATACLKP/N ISTRP/N and SYNCP/N reset latched only on rising edge of DATACLKP/N Config36 Setting ps
datadly clkdly
0 0 400
0 1 450
0 2 500
0 3 550
0 4 600
0 5 650
0 6 700
0 7 750
1 0 350
2 0 300
3 0 250
4 0 200
5 0 150
6 0 100
7 0 50
t(ISTR_SYNC) ISTRP/N and SYNCP/N pulse width fDATACLK is DATACLK frequency in MHz 1/2fDATACLK ns
TIMING OUTPUT STROBE INPUT: DACCLKP/N rising edge LATCHING(1)
ts(OSTR) Setup time, OSTRP/N valid to rising edge of DACCLKP/N –100 ps
th(OSTR) Hold time, OSTRP/N valid after rising edge of DACCLKP/N 500 ps
TIMING SYNC INPUT: DACCLKP/N rising edge LATCHING(2)
ts(SYNC_PLL) Setup time, SYNCP/N valid to rising edge of DACCLKP/N 200 ps
th(SYNC_PLL) Hold time, SYNCP/N valid after rising edge of DACCLKP/N 300 ps
TIMING SERIAL PORT
ts(SDENB) Setup time, SDENB to rising edge of SCLK 20 ns
ts(SDIO) Setup time, SDIO valid to rising edge of SCLK 10 ns
th(SDIO) Hold time, SDIO valid to rising edge of SCLK 5 ns
t(SCLK) Period of SCLK Register config6 read (temperature sensor read) 1 µs
All other registers 100 ns
td(Data) Data output delay after falling edge of SCLK 10 ns
tRESET Minimum RESETB pulse width 25 ns
(1) OSTR is required in Dual Sync Sources mode. In order to minimize the skew it is recommended to use the same clock distribution device such as Texas Instruments CDCE62005 to provide the DACCLK and OSTR signals to all the DAC34H84 devices in the system. Swap the polarity of the DACCLK outputs with respect to the OSTR ones to establish proper phase relationship.
(2) SYNC is required to synchronize the PLL circuit in multiple devices. The SYNC signal must meet the timing relationship with respect to the reference clock (DACCLKP/N) of the on-chip PLL circuit.

6.9 Switching Characteristics – AC Specifications

over recommended operating free-air temperature range, nominal supplies, IOUTFS = 20 mA (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG OUTPUT(1)
ts(DAC) Output settling time to 0.1% Transition: Code 0x0000 to 0xFFFF 10 ns
tpd Output propagation delay DAC outputs are updated on the falling edge of DAC clock. Does not include Digital Latency (see below). 2 ns
tr(IOUT) Output rise time 10% to 90% 220 ps
tf(IOUT) Output fall time 90% to 10% 220 ps
Digital latency No interpolation, FIFO on, Mixer off, QMC off, Inverse sinc off 128 DAC clock cycles
2x Interpolation 216
4x Interpolation 376
8x Interpolation 726
16x Interpolation 1427
Fine mixer 24
QMC 16
Inverse sinc 20
Power-up
Time
DAC wake-up time IOUT current settling to 1% of IOUTFS from output sleep 2 µs
DAC sleep time IOUT current settling to less than 1% of IOUTFS in output sleep 2
(1) Measured single ended into 50-Ω load.

6.10 Typical Characteristics

All plots are at 25°C, nominal supply voltage, fDAC = 1250 MSPS, 2x interpolation, NCO enabled, Mixer Gain disabled, QMC enabled with gain set at 1446 for both I/Q channels, 0 dBFS digital input, 20 mA full-scale output current with 4:1 transformer (unless otherwise noted)
DAC34H84 G001_LAS751.png Figure 1. Integral Nonlinearity
DAC34H84 G003_LAS751.png Figure 3. SFDR vs Output Frequency Over Input Scale
DAC34H84 G005_LAS751.png Figure 5. Third Harmonic Distortion vs Output Frequency Over Input Scale
DAC34H84 G007_LAS751.png Figure 7. SFDR vs Output Frequency Over fDAC
DAC34H84 G009_LAS751.png Figure 9. Single Tone Spectral Plot
DAC34H84 G011_LAS751.png Figure 11. Single Tone Spectral Plot
DAC34H84 G013_LAS751.png Figure 13. Single Tone Spectral Plot
DAC34H84 G015_LAS751.png Figure 15. IMD3 vs Output Frequency Over Interpolation
DAC34H84 G017_LAS751.png Figure 17. IMD3 vs Output Frequency Over IOUTFS
DAC34H84 G019_LAS751.png Figure 19. Two Tone Spectral Plot
DAC34H84 G021_LAS751.png Figure 21. NSD vs Output Frequency Over Interpolation
DAC34H84 G023_LAS751.png Figure 23. NSD vs Output Frequency Over IOUTFS
DAC34H84 G025_LAS751.png Figure 25. Single Carrier WCDMA ACLR (Adjacent) vs Output Frequency Over Clocking Options
DAC34H84 G027_LAS751.gif Figure 27. Single Carrier W-CDMA Test Model 1
DAC34H84 G029_LAS751.gif
Figure 29. Single Carrier W-CDMA Test Model 1
DAC34H84 G031_LAS751.gif Figure 31. Four Carrier W-CDMA Test Model 1
DAC34H84 G033_LAS751.gif Figure 33. 10 MHz Single Carrier LTE Test Model 3.1
DAC34H84 G035_LAS751.gif Figure 35. 20 MHz Single Carrier LTE Test Model 3.1
DAC34H84 G037_LAS751.png Figure 37. Power Consumption vs fDAC Over Interpolation
DAC34H84 G039_LAS751.png Figure 39. Power Consumption vs fDAC Over Digital Processing Functions
DAC34H84 G041_LAS751.png Figure 41. DIGVDD Current vs fDAC Over Interpolation
DAC34H84 G043_LAS751.png Figure 43. DACVDD Current vs fDAC
DAC34H84 G045_LAS751.png Figure 45. AVDD Current vs fDAC
DAC34H84 G047_LAS751.png Figure 47. Channel Isolation vs Output Frequency
DAC34H84 G002_LAS751.png Figure 2. Differential Nonlinearity
DAC34H84 G004_LAS751.png Figure 4. Second Harmonic Distortion vs Output Frequency Over Input Scale
DAC34H84 G006_LAS751.png Figure 6. SFDR vs Output Frequency Over Interpolation
DAC34H84 G008_LAS751.png Figure 8. SFDR vs Output Frequency Over IOUTFS
DAC34H84 G010_LAS751.png Figure 10. Single Tone Spectral Plot
DAC34H84 G012_LAS751.png Figure 12. Single Tone Spectral Plot
DAC34H84 G014_LAS751.png Figure 14. IMD3 vs Output Frequency Over Input Scale
DAC34H84 G016_LAS751.png Figure 16. IMD3 vs Output Frequency Over fDAC
DAC34H84 G018_LAS751.png Figure 18. Two Tone Spectral Plot
DAC34H84 G020_LAS751.png Figure 20. NSD vs Output Frequency Over Input Scale
DAC34H84 G022_LAS751.png Figure 22. NSD vs Output Frequency Over fDAC
DAC34H84 G024_LAS751.png Figure 24. NSD vs Output Frequency Over Clocking Options
DAC34H84 G026_LAS751.png Figure 26. Single Carrier WCDMA ACLR (Alternate) vs Output Frequency Over Clocking Options
DAC34H84 G028_LAS751.gif Figure 28. Single Carrier W-CDMA Test Model 1
DAC34H84 G030_LAS751.gif Figure 30. Four Carrier W-CDMA Test Model 1
DAC34H84 G032_LAS751.gif Figure 32. Four Carrier W-CDMA Test Model 1
DAC34H84 G034_LAS751.gif Figure 34. 10 MHz Single Carrier LTE Test Model 3.1
DAC34H84 G036_LAS751.gif Figure 36. 20 MHz Single Carrier LTE Test Model 3.1
DAC34H84 G038_LAS751.png Figure 38. Power Consumption vs fDAC Over Interpolation
DAC34H84 G040_LAS751.png Figure 40. DIGVDD Current vs fDAC Over Interpolation
DAC34H84 G042_LAS751.png Figure 42. DIGVDD Current vs fDAC Over Digital Processing Functions
DAC34H84 G044_LAS751.png Figure 44. CLKVDD Current vs fDAC
DAC34H84 G046_LAS751.png Figure 46. Channel Isolation vs Output Frequency
DAC34H84 G048_LAS751.png Figure 48. Group Delay vs Step Code