ZHCSWL8 June   2024 DAC80516

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 引脚配置和功能
  6. 规格
    1. 5.1  绝对最大额定值
    2. 5.2  ESD 等级
    3. 5.3  建议运行条件
    4. 5.4  热性能信息
    5. 5.5  电气特性
    6. 5.6  时序要求 - I2C 标准模式
    7. 5.7  时序要求 - I2C 快速模式
    8. 5.8  时序要求 - I2C 快速+ 模式
    9. 5.9  时序要求 - SPI
    10. 5.10 开关特性
    11. 5.11 时序图
    12. 5.12 典型特性
  7. 详细说明
    1. 6.1 概述
    2. 6.2 功能方框图
    3. 6.3 特性说明
      1. 6.3.1 数模转换器 (DAC) 架构
        1. 6.3.1.1 DAC 寄存器结构
          1. 6.3.1.1.1 DAC 同步运行
          2. 6.3.1.1.2 DAC 缓冲器放大器
          3. 6.3.1.1.3 DAC 传递函数
      2. 6.3.2 内部基准
      3. 6.3.3 上电复位 (POR)
    4. 6.4 器件功能模式
      1. 6.4.1 清除模式
    5. 6.5 编程
      1. 6.5.1 I2C 串行接口
        1. 6.5.1.1 I2C 总线概述
        2. 6.5.1.2 I2C 总线定义
        3. 6.5.1.3 I2C 目标地址选择
        4. 6.5.1.4 I2C 读取和写入操作
        5. 6.5.1.5 I2C 通用调用复位
      2. 6.5.2 串行外设接口 (SPI)
        1. 6.5.2.1 SPI 总线概述
  8. 寄存器映射
    1. 7.1 DAC80516 寄存器
  9. 应用和实施
    1. 8.1 应用信息
      1. 8.1.1 双极电压输出
    2. 8.2 典型应用
      1. 8.2.1 可编程高电流电压输出电路
        1. 8.2.1.1 设计要求
        2. 8.2.1.2 详细设计过程
        3. 8.2.1.3 应用曲线
    3. 8.3 初始化设置
    4. 8.4 电源相关建议
    5. 8.5 布局
      1. 8.5.1 布局指南
      2. 8.5.2 布局示例
  10. 器件和文档支持
    1. 9.1 文档支持
      1. 9.1.1 相关文档
    2. 9.2 接收文档更新通知
    3. 9.3 支持资源
    4. 9.4 商标
    5. 9.5 静电放电警告
    6. 9.6 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息
    1. 11.1 卷带包装信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • RUY|28
散热焊盘机械数据 (封装 | 引脚)
订购信息

详细设计过程

使用方程式 4 计算输出电压的传递函数。

方程式 4. V O U T P U T =   V D A C 1 + R 1 R 2

可以选择电阻值,使得静态电流与负载电流相比可以忽略不计。如果需要 10A 负载电流和 5V 输出电压,请选择 R1 和 R2 均为 10kΩ。这样可以将流经反馈网络的静态电流最小化为 5V / 20kΩ = 250μA。

对于给定的负载电流 IL,可通过方程式 5 计算晶体管的基极电流 IB

方程式 5. I B = I C H F E =   1 H F E I L + V O U T P U T R 1 + R 2

其中:

  • IC = 晶体管的集电极电流
  • HFE = 晶体管的直流电流增益

VOUTPUT / (R1+R2) 等于先前计算出的静态电流,与负载电流相比可以忽略不计(尤其是对于高于 1A 的负载电流)。因此,该公式简化为方程式 6

方程式 6. I B = I L H F E

为了保持 IB 小于 20mA,HFE 必须大于 IL / 20mA。通常,补偿电容器 C1 不是由固定的公式进行设置的,而是通过在观察输出小信号阶跃响应的同时选择适当值来设置的。