SLAS429E April   2005  – June 2017 DAC8551

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Characteristics
    7. 6.7 Typical Characteristics
      1. 6.7.1 VDD = 5 V
      2. 6.7.2 VDD = 2.7 V
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DAC Section
        1. 7.3.1.1 Resistor String
        2. 7.3.1.2 Output Amplifier
      2. 7.3.2 Power-On Reset
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Down Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface
      2. 7.5.2 Input Shift Register
      3. 7.5.3 SYNC Interrupt
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bipolar Operation Using the DAC8551
    2. 8.2 Typical Application
      1. 8.2.1 Loop-Powered, 2-Wire, 4-mA to 20-mA Transmitter With XTR116
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Using the REF02 as a Power Supply for the DAC8551
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
    3. 8.3 System Examples
      1. 8.3.1 Microprocessor Interfacing
        1. 8.3.1.1 DAC8551 to 8051 Interface
        2. 8.3.1.2 DAC8551 to Microwire Interface
        3. 8.3.1.3 DAC8551 to 68HC11 Interface
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings(1)

MIN MAX UNIT
Input voltage GND –0.3 6 V
Digital input voltage GND –0.3 VDD + 0.3 V
Output voltage GND –0.3 VDD + 0.3 V
Operating temperature –40 105°C °C
Junction temperature, TJ 150°C °C
Storage temperature, Tstg –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage (VDD to GND) 2.7 5.5 V
Digital input voltage (DIN, SCLK, and SYNC) 0 VDD V
VREF Reference input voltage 0 VDD V
VFB Output amplifier feedback input VOUT V
TA Operating ambient temperature –40 105 °C

Thermal Information

THERMAL METRIC(1) DAC8551 UNIT
DGK (VSSOP)
8 PINS
RθJA Junction-to-ambient thermal resistance 206 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 44 °C/W
RθJB Junction-to-board thermal resistance 94.2 °C/W
ψJT Junction-to-top characterization parameter 10.2 °C/W
ψJB Junction-to-board characterization parameter 92.7 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

VDD = 2.7 V to 5.5 V and –40°C to 105°C (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
STATIC PERFORMANCE(1)
Resolution 16 Bits
Relative accuracy Measured by line passing through codes 485 and 64741 at VREF = 5 V, codes 970 and 63947 at
VREF = 2.5 V
DAC8551 ±12 LSB
DAC8551A ±16 LSB
Differential nonlinearity 2.5 V ≤ VREF ≤ 5.5 V, 0°C ≤ TA ≤ 105°C ±1 LSB
4.2 V < VREF ≤ 5.5 V, -40°C ≤ TA ≤ 105°C ±1 LSB
2.5 V ≤ VREF ≤ 4.2 V, -40°C ≤ TA ≤ 0°C ±2 LSB
Zero-code error Measured by line passing through codes 485 and 64741 ±2 ±12 mV
Full-scale error ±0.05% ±0.5% FSR
Gain error Measured by line passing through codes 485 and 64741 DAC8551 ±0.02% ±0.15% FSR
DAC8551A ±0.02% ±0.2% FSR
Zero-code error drift ±5 μV/°C
Gain temperature coefficient ±1 ppm of FSR/°C
PSRR Power-supply rejection ratio RL = 2 kΩ, CL = 200 pF 0.75 mV/V
OUTPUT CHARACTERISTICS(2)
Output voltage range 0 VREF V
Output voltage settling time To ±0.003% FSR, 0200h to FD00h, RL = 2 kΩ,
0 pF < CL < 200 pF
8 10 μs
RL = 2 kΩ, CL = 50 pF 12 μs
Slew rate 1.8 V/μs
Capacitive load stability RL = ∞ 470 pF
RL = 2 kΩ 1000 pF
Code change glitch impulse 1 LSB change around major carry 0.1 nV-s
Digital feedthrough 50 kΩ series resistance on digital lines 0.1
DC output impedance At mid-code input 1 Ω
Short-circuit current VDD = 5 V 50 mA
VDD = 3 V 20
Power-up time Coming out of power-down mode, VDD = 5 V 2.5 μs
Coming out of power-down mode, VDD = 3 V 5
AC PERFORMANCE
SNR Signal-to-noise ratio BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz,
1st 19 harmonics removed for SNR calculation
95 dB
THD Total harmonic distortion BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz,
1st 19 harmonics removed for SNR calculation
–85 dB
SFDR Spurious-free dynamic range BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz,
1st 19 harmonics removed for SNR calculation
87 dB
SINAD Signal to noise and distortion BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz,
1st 19 harmonics removed for SNR calculation
84 dB
REFERENCE INPUT
Reference current VREF = VDD = 5 V 40 75 μA
VREF = VDD = 3.6 V 30 45 μA
Reference input range 0 VDD V
Reference input impedance 125
LOGIC INPUTS(2)
Input current ±1 μA
VIL Input LOW voltage 3 V ≤ VDD ≤ 5.5 V 0.3 X VDD V
2.7 V ≤ VDD < 3 V 0.1 X VDD
VIH Input HIGH voltage 3 V ≤ VDD ≤ 5.5 V 0.7 X VDD V
2.7 V ≤ VDD < 3 V 0.9 X VDD
Pin capacitance 3 pF
POWER REQUIREMENTS
VDD Supply voltage 2.7 5.5 V
IDD Supply current Normal mode, input code = 32768,
no load, does not include reference current
VDD = 3.6 V to 5.5 V,
VIH = VDD and
VIL = GND
160 250 μA
VDD = 2.7 V to 3.6 V,
VIH = VDD and
VIL = GND
140 240
All power-down modes,
VIH = VDD and VIL = GND
VDD = 3.6 V to 5.5 V 0.2 2 μA
VDD = 2.7 V to 3.6 V 0.05 2
IOUT/IDD Power efficiency ILOAD = 2 mA, VDD = 5 V 89%
Specified performance temperature –40 105 °C
Linearity calculated using a reduced codes range of 485 and 64741 at VREF = 5V, codes 970 and 63947 at VREF = 2.5V; output unloaded, 100mV headroom between reference and supply
Specified by design and characterization; not production tested.

Timing Characteristics

VDD = 2.7 V to 5.5 V, all specifications –40°C to 105°C (unless otherwise noted)(1)(2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t1(3) SCLK cycle time VDD = 2.7 V to 3.6 V 50 ns
VDD = 3.6 V to 5.5 V 33
t2 SCLK HIGH time VDD = 2.7 V to 3.6 V 13 ns
VDD = 3.6 V to 5.5 V 13
t3 SCLK LOW time VDD = 2.7 V to 3.6 V 22.5 ns
VDD = 3.6 V to 5.5 V 13
t4 SYNC to SCLK rising edge setup time VDD = 2.7 V to 3.6 V 0 ns
VDD = 3.6 V to 5.5 V 0
t5 Data setup time VDD = 2.7 V to 3.6 V 5 ns
VDD = 3.6 V to 5.5 V 5
t6 Data hold time VDD = 2.7 V to 3.6 V 4.5 ns
VDD = 3.6 V to 5.5 V 4.5
t7 24th SCLK falling edge to SYNC rising edge VDD = 2.7 V to 3.6 V 0 ns
VDD = 3.6 V to 5.5 V 0
t8 Minimum SYNC HIGH time VDD = 2.7 V to 3.6 V 50 ns
VDD = 3.6 V to 5.5 V 33
t9 24th SCLK falling edge to SYNC falling edge VDD = 2.7 V to 5.5 V 100 ns
All input signals are specified with tR = tF = 5 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH) / 2.
See Figure 1.
Maximum SCLK frequency is 30 MHz at VDD = 3.6 V to 5.5 V and 20 MHz at VDD = 2.7 V to 3.6 V.
DAC8551 tim_ser_las430.gif Figure 1. Serial Write Operation

Typical Characteristics

VDD = 5 V

At TA = 25°C (unless otherwise noted)

DAC8551 tc_le_5v_40c_las429.gif Figure 2. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC8551 tc_le_5v_105c_las429.gif Figure 4. Linearity Error and Differential Linearity Error vs Digital Input Code (105°C)
DAC8551 tc_fse-tmp_5v_las429.gif Figure 6. Full-Scale Error vs Temperature
DAC8551 tc_idd-code_5v_las429.gif Figure 8. Supply Current vs Digital Input Code
DAC8551 tc_idd-vdd_5v_las429.gif Figure 10. Supply Current vs Supply Voltage
DAC8551 tc_idd-logic_5v_las429.gif Figure 12. Supply Current vs Logic Input Voltage
DAC8551 tc_fs_5v_fal_las429.gif Figure 14. Full-Scale Settling Time, 5-V Falling Edge
DAC8551 tc_hs_5v_fal_las429.gif Figure 16. Half-Scale Settling Time, 5-V Falling Edge
DAC8551 tc_gl_5v1_fal_las429.gif Figure 18. Glitch Energy: 5-V, 1-LSB Step, Falling Edge
DAC8551 tc_gl_5v16_fal_las429.gif Figure 20. Glitch Energy: 5-V, 16-LSB Step, Falling Edge
DAC8551 tc_gl_5v256_fal_las429.gif Figure 22. Glitch Energy: 5-V, 256-LSB Step, Falling Edge
DAC8551 tc_snr-fout_5v_las429.gif Figure 24. Signal-to-Noise Ratio vs Output Frequency
DAC8551 tc_noise_density_5v_las429.gif Figure 26. Output Noise Density
DAC8551 tc_le_5v_25c_las429.gif Figure 3. Linearity Error and Differential Linearity Error vs Digital Input Code
DAC8551 tc_zse-tmp_5v_las429.gif Figure 5. Zero-Scale Error vs Temperature
DAC8551 tc_source_sink_5v_las429.gif Figure 7. Source and Sink Current Capability
DAC8551 tc_idd-tmp_5v_las429.gif Figure 9. Power-Supply Current vs Temperature
DAC8551 tc_pd-vdd_5v_las429.gif Figure 11. Power-Down Current vs Supply Voltage
DAC8551 tc_fs_5v_ris_las429.gif Figure 13. Full-Scale Settling Time, 5-V Rising Edge
DAC8551 tc_hs_5v_ris_las429.gif Figure 15. Half-Scale Settling Time, 5-V Rising Edge
DAC8551 tc_gl_5v1_ris_las429.gif Figure 17. Glitch Energy: 5-V, 1-LSB Step, Rising Edge
DAC8551 tc_gl_5v16_ris_las429.gif Figure 19. Glitch Energy: 5-V, 16-LSB Step, Rising Edge
DAC8551 tc_gl_5v256_ris_las429.gif Figure 21. Glitch Energy: 5-V, 256-LSB Step, Rising Edge
DAC8551 tc_thd-fout_5v_las429.gif Figure 23. Total Harmonic Distortion vs Output Frequency
DAC8551 tc_power_density_5v_las429.gif Figure 25. Power Spectral Density

VDD = 2.7 V

At TA = 25°C (unless otherwise noted)

DAC8551 tc_le_27v_40c_las429.gif Figure 27. Linearity Error and Differential Linearity Error vs Digital Input Code (–40°C)
DAC8551 tc_le_27v_105c_las429.gif Figure 29. Linearity Error and Differential Linearity Error vs Digital Input Code (105°C)
DAC8551 tc_le_27v_25c_las429.gif Figure 28. Linearity Error and differential Linearity Error vs Digital Input Code
DAC8551 tc_zse-tmp_27v_las429.gif Figure 30. Zero-Scale Error vs Temperature
DAC8551 tc_fse-tmp_27v_las429.gif Figure 31. Full-Scale Error vs Temperature
DAC8551 tc_idd-code_27v_las429.gif Figure 33. Supply Current vs Digital Input Code
DAC8551 tc_idd-logic_27v_las429.gif Figure 35. Supply Current vs Logic Input Voltage
DAC8551 tc_fs_27v_fal_las429.gif Figure 37. Full-Scale Settling Time: 2.7-V Falling Edge
DAC8551 tc_hs_27v_fal_las429.gif Figure 39. Half-Scale Settling Time: 2.7-V Falling Edge
DAC8551 tc_gl_27v1_fal_las429.gif Figure 41. Glitch Energy: 2.7-V, 1-LSB Step, Falling Edge
DAC8551 tc_gl_27v16_fal_las429.gif Figure 43. Glitch Energy: 2.7-V, 16-LSB Step, Falling Edge
DAC8551 tc_gl_27v256_fal_las429.gif Figure 45. Glitch Energy: 2.7-V, 256-LSB Step, Falling Edge
DAC8551 tc_source_sink_27v_las429.gif Figure 32. Source and Sink Current Capability
DAC8551 tc_idd-tmp_27v_las429.gif Figure 34. Power-Supply Current vs Temperature
DAC8551 tc_fs_27v_ris_las429.gif Figure 36. Full-Scale Settling Time: 2.7-V Rising Edge
DAC8551 tc_hs_27v_ris_las429.gif Figure 38. Half-Scale Settling Time: 2.7-V Rising Edge
DAC8551 tc_gl_27v1_ris_las429.gif Figure 40. Glitch Energy: 2.7-V, 1-LSB Step, Rising Edge
DAC8551 tc_gl_27v16_ris_las429.gif Figure 42. Glitch Energy: 2.7-V, 16-LSB Step, Rising Edge
DAC8551 tc_gl_27v256_ris_las429.gif Figure 44. Glitch Energy: 2.7-V, 256-LSB Step, Rising Edge