SBAS368D May   2006  – December 2016 DDC264

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Dual Switched Integrator: Basic Integration Cycle
      2. 8.3.2 Integration Capacitors
      3. 8.3.3 Voltage Reference
      4. 8.3.4 Serial Data Output and Control Interface
        1. 8.3.4.1 System and Data Clocks (CLK and DCLK)
        2. 8.3.4.2 CONV: Setting the Integration Time
        3. 8.3.4.3 Data Valid (DVALID)
        4. 8.3.4.4 Data Format
        5. 8.3.4.5 Data Retrieval
          1. 8.3.4.5.1 Cascading Multiple Converters
          2. 8.3.4.5.2 Retrieval Before CONV Toggles
          3. 8.3.4.5.3 Retrieval After CONV Toggles
          4. 8.3.4.5.4 Retrieval Before and After CONV Toggles
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Reset (RESET)
      2. 8.5.2 Configuration Register — Read and Write Operations
    6. 8.6 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Input Connection
        2. 9.2.2.2 Selecting Integration Time, Device Clock, and Range
        3. 9.2.2.3 Voltage Reference
        4. 9.2.2.4 Reading the Measurement
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power-Up Sequencing
    2. 10.2 Power Supplies and Grounding
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Shielding Analog Signal Paths
      2. 11.1.2 Power Supply Routing
      3. 11.1.3 Reference Routing
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
AVDD to AGND –0.3 6 V
DVDD to DGND –0.3 3.6 V
AGND to DGND ±0.2 V
VREF input to AGND 2 AVDD + 0.3 V
Analog input to AGND –0.3 0.7 V
Digital input voltage to DGND –0.3 0.3 V
Digital output voltage to DGND –0.3 0.3 V
Operating temperature 0 70 °C
Junction temperature, TJ 150 °C
Storage temperature, Tstg –60 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±4000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VREF Reference voltage 4 4.096 4.2 V
POWER-SUPPLY REQUIREMENTS
Analog power supply voltage (AVDD) DDC264C 4.75 5 5.25 V
DDC264CK 4.9 5 5.1
Digital power supply voltage (DVDD) 2.7 3.3 3.6 V
DYNAMIC CHARACTERISTICS
Data rate DDC264C 3 3.125 kSPS
DDC264CK 6 6.25
tINT Integration time DDC264C 320 333 1,000,000 µs
DDC264CK 160 166 1,000,000
System clock Clkdiv = 0 DDC264C 1 5 MHz
DDC264CK 1 10
Clkdiv = 1 DDC264C 4 20 MHz
DDC264CK 4 40
Data clock (DCLK) 32 MHz
Configuration clock (CLK_CFG) 20 MHz

Thermal Information

THERMAL METRIC(1) DDC264C,
DDC264CK
UNIT
ZAW (NFBGA)
100 PINS
RθJA Junction-to-ambient thermal resistance 25.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 9.8 °C/W
RθJB Junction-to-board thermal resistance 7.1 °C/W
ψJT Junction-to-top characterization parameter 0.1 °C/W
ψJB Junction-to-board characterization parameter 7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

at TA = 25°C, AVDD = 5 V, DVDD = 3 V, VREF = 4.096 V, tINT = 333 µs for DDC264C or 166 µs for DDC264CK,
and range = 3 (150 pC) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Range 0 10.5 12.5 14.5 pC
Range 1 47.5 50 52.5 pC
Range 2 95 100 105 pC
Range 3 142.5 150 157.5 pC
Negative full-scale range –0.4% of Positive full-scale range pC
ACCURACY
Noise, low-level input(1) Range = 3, CSENSOR(2) = 35 pF 6.3 ppm of FSR(3), rms
Integral linearity error(4) ±0.025% Reading ±1-ppm FSR ±0.05% Reading
±1.5-ppm
FSR
Resolution No missing codes, format = 1 20 Bits
No missing codes, format = 0 16
Input bias current TA = 25°C to 45°C ±0.5 ±5 pA
Range error match(5) 0.1% 0.5% FSR
Range sensitivity to VREF VREF = 4.096 ±0.1 V 1:1
Offset error ±500 ±1000 ppm of FSR
Offset error match(5) ±150 ppm of FSR
DC bias voltage(6) Low-level input (< 1% FSR) ±0.1 ±1 mV
Power-supply rejection ratio At DC 100 ±300 ppm of FSR/V
PERFORMANCE OVER TEMPERATURE
Offset drift ±0.5 5(7) ppm of FSR/°C
Offset drift stability ±0.2 2(7) ppm of FSR/minute
DC bias voltage drift(6) ±3 μV/°C
Input bias current drift TA = 25°C to 45°C 0.01 1(7) pA/°C
Range drift(8) 25 50 ppm/°C
Range drift match(5) ±5 ppm/°C
REFERENCE
Input current(9) Average value with tINT = 333 µs 825 μA
Average value with tINT = 166 µs (DDC264CK) 1650 μA
DIGITAL INPUT AND OUTPUT
VIH 0.8 × DVDD DVDD + 0.1 V
VIL –0.1 0.2 × DVDD V
VOH IOH = –500 µA DVDD – 0.4 V
VOL IOL = 500 µA 0.4 V
IIN Input current 0 < VIN < DVDD ±10 µA
Data format(10) Straight binary
POWER-SUPPLY REQUIREMENTS
Analog current DDC264C 34 mA
DDC264CK 60
Digital current DDC264C 7.5 mA
DDC264CK 15
Total power dissipation DDC264C 192 256 mW
DDC264CK 350
Per channel power dissipation DDC264C 3 4 mW/Channel
DDC264CK 5.5
Input is less than 1% of full-scale.
CSENSOR is the capacitance seen at the DDC264 inputs from wiring, photodiode, etc.
FSR is full-scale range.
A best-fit line is used in measuring nonlinearity.
Matching between side A and side B of the same input.
Voltage produced by the DDC264 at its input that is applied to the sensor.
Ensured by design; not production tested.
Range drift does not include external reference drift.
Input reference current decreases with increasing tINT (see Voltage Reference).
Data format is straight binary with a small offset. The number of bits in the output word is controlled by the format bit.

Table 1. NOISE vs CSENSOR(1)

RANGE CSENSOR
0 pF 10 pF 30 pF 43 pF 57 pF 100 pF 270 pF 470 pF 1000 pF
ppm of FSR, rms
Range 0: 12.5 pC 16 20 30 37 44 71 160 270 510
Range 1: 50 pC 6.4 7.4 10 12 14 21 45 74 130
Range 2: 100 pC 5.1 5.5 7.1 8 9.1 12 25 39 71
Range 3: 150 pC 4.8 5 6 6.5 7.2 9.6 17 27 49
fC, rms
Range 0: 12.5 pC 0.2 0.25 0.38 0.46 0.55 0.89 2 3.38 6.38
Range 1: 50 pC 0.32 0.37 0.53 0.62 0.73 1.09 2.29 3.73 6.88
Range 2: 100 pC 0.51 0.55 0.71 0.8 0.91 1.28 2.5 3.97 7.16
Range 3: 150 pC 0.72 0.75 0.9 0.98 1.08 1.45 2.67 4.14 7.36
Electrons, rms
Range 0: 12.5 pC 1250 1560 2340 2890 3430 5540 12480 21070 39790
Range 1: 50 pC 2010 2310 3340 3910 4570 6800 14200 23300 42900
Range 2: 100 pC 3220 3440 4450 5000 5680 7990 15600 24800 44700
Range 3: 150 pC 4530 4730 5610 6120 6770 9050 16700 25800 45900
Noise in Table 1 is expressed in three different units for reader convenience. The first section lists noise in units of parts per million of full-scale range; the second section shows noise as an equivalent input charge (in fC); and the third section converts noise to electrons.

Typical Characteristics

at TA = 25°C (unless otherwise noted)
DDC264 tc_inl_25c_3kHz_bas368.gif
Figure 1. Integral Nonlinearity
DDC264 tc_inl_25c_3kHz_150pC_bas368.gif
Figure 3. Integral Nonlinearity Envelope of All 64 Channels
DDC264 tc_inl_3kHz_150pC_temp_bas368.gif
Figure 5. Integral Nonlinearity vs Temperature
DDC264 tc_noise_integrate_time_bas368.gif
Figure 7. NOISE vs Integration Time
DDC264 tc_noise_temp_bas368.gif
Figure 9. NOISE vs Temperature
DDC264 tc_offset_drift_temp_bas368.gif
Figure 11. Offset Drift vs Temperature
DDC264 tc_isc_analog_temp_bas368.gif
Figure 13. Analog Supply Current vs Temperature
DDC264 tc_dc_vbias_232c_bas368.gif
Figure 15. DC BIAS Voltage vs Input Percentage
DDC264 tc_noise_csensor_bas368.gif
Figure 17. NOISE vs CSENSOR
DDC264 tc_inl_25c_6kHz_bas368.gif
Figure 2. Integral Nonlinearity
DDC264 tc_inl_25c_6kHz_150pC_bas368.gif
Figure 4. Integral Nonlinearity Envelope of All 64 Channels
DDC264 tc_inl_6kHz_150pC_temp_bas368.gif
Figure 6. Integral Nonlinearity vs Temperature
DDC264 tc_noise_input_level_bas368.gif
Figure 8. NOISE vs Input Level
DDC264 tc_ib_temp_bas368.gif
Figure 10. Input BIAS Current vs Temperature
DDC264 tc_offset_drift_histo_bas368.gif
Figure 12. Offset Drift Stability Over Time Histogram
DDC264 tc_isc_digital_temp_bas368.gif
Figure 14. Digital Supply Current vs Temperature
DDC264 tc_dc_vbias_232ck_bas368.gif
Figure 16. DC BIAS Voltage vs Input Percentage