ZHCSRS7A August   2017  – February 2023 DLP650NE

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Window Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Micromirror Array Physical Characteristics
    11. 6.11 Micromirror Array Optical Characteristics
    12. 6.12 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Interface
      2. 7.3.2 Timing
    4. 7.4 Device Functional Modes
    5. 7.5 Optical Interface and System Image Quality Considerations
      1. 7.5.1 Numerical Aperture and Stray Light Control
      2. 7.5.2 Pupil Match
      3. 7.5.3 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
    7. 7.7 Micromirror Landed-On or Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On or Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
        1.       Application and Implementation
          1. 8.1 Application Information
          2. 8.2 Typical Application
            1. 8.2.1 Design Requirements
            2. 8.2.2 Detailed Design Procedure
  8. Power Supply Requirements
    1. 8.1 DMD Power Supply Requirements
    2. 8.2 DMD Power Supply Power-Up Procedure
    3. 8.3 DMD Power Supply Power-Down Procedure
  9. Device Documentation Support
    1. 9.1 第三方米6体育平台手机版_好二三四免责声明
    2. 9.2 Device Support
      1. 9.2.1 Device Nomenclature
      2. 9.2.2 Device Markings
    3. 9.3 Documentation Support
      1. 9.3.1 Related Documentation
    4. 9.4 Receiving Notification of Documentation Updates
    5. 9.5 支持资源
    6. 9.6 Trademarks
    7. 9.7 静电放电警告
    8. 9.8 术语表
  10. 10Mechanical, Packaging, and Orderable Information

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • FYE|350
散热焊盘机械数据 (封装 | 引脚)
订购信息

Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD’s micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the DMD’s usable life.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

Individual DMD mirror duty cycles vary by application as well as the mirror location on the DMD within any specific application. DMD mirror useful life are maximized when every individual mirror within a DMD approaches 50/50 (or 1/1) duty cycle. Therefore, for the DLPC4430 and DLP650NE chipset, it is recommended that the DMD Idle Mode be enabled as often as possible. Examples are whenever the system is idle, the illumination is disabled, between sequential pattern exposures (if possible), or when the exposure pattern sequence is stopped for any reason. This software mode provides a 50/50 duty cycle across the entire DMD mirror array, where the mirrors are continuously flipped between the on and off states. Refer to the DLPC4430 Software Programmer’s Guide for a description of the DMD Idle Mode command. For the DLPC910 and DLP650NE chipset, it is recommended that the controlling applications processor provide a 50/50 pattern sequence to the DLPC910 for display on the DLP650NE as often as possible, similar to the above examples stated for the DLPC4430. The pattern provides a 50/50 duty cycle across the entire DMD mirror array, where the mirrors are continuously flipped between the ON and OFF states.