ZHCSKV8A November   2020  – June 2022 DLP670S

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Capacitance at Recommended Operating Conditions
    8. 6.8  Timing Requirements
    9. 6.9  Typical Characteristics
    10. 6.10 System Mounting Interface Loads
    11. 6.11 Micromirror Array Physical Characteristics
    12. 6.12 Micromirror Array Optical Characteristics
    13. 6.13 Window Characteristics
    14. 6.14 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Interface
      2. 7.3.2 Timing
    4. 7.4 Device Functional Modes
    5. 7.5 Optical Interface and System Image Quality
      1. 7.5.1 Numerical Aperture and Stray Light Control
      2. 7.5.2 Pupil Match
      3. 7.5.3 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Micromirror Array Temperature Calculation using Illumination Power Density
      2. 7.6.2 Micromirror Array Temperature Calculation using Total Illumination Power
      3. 7.6.3 Micromirror Array Temperature Calculation using Screen Lumens
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
    3. 8.3 DMD Die Temperature Sensing
  9. Power Supply Recommendations
    1. 9.1 DMD Power Supply Power-Up Procedure
    2. 9.2 DMD Power Supply Power-Down Procedure
    3. 9.3 Restrictions on Hot Plugging and Hot Swapping
      1. 9.3.1 No Hot Plugging
      2. 9.3.2 No Hot Swapping
      3. 9.3.3 Intermittent or Voltage Power Spike Avoidance
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Critical Signal Guidelines
      2. 10.1.2 Power Connection Guidelines
      3. 10.1.3 Noise Coupling Avoidance
    2. 10.2 Layout Example
      1. 10.2.1 Layers
      2. 10.2.2 Impedance Requirements
      3. 10.2.3 Trace Width, Spacing
        1. 10.2.3.1 Voltage Signals
  11. 11Device and Documentation Support
    1. 11.1 第三方米6体育平台手机版_好二三四免责声明
    2. 11.2 Device Support
      1. 11.2.1 Device Nomenclature
      2. 11.2.2 Device Markings
    3. 11.3 Documentation Support
      1. 11.3.1 Related Documentation
    4. 11.4 接收文档更新通知
    5. 11.5 支持资源
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 术语表
  12. 12Mechanical, Packaging, and Orderable Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Micromirror Array Optical Characteristics

Table 6-4 Micromirror Array Optical Characteristics
PARAMETERTEST CONDITIONMINNOMMAXUNIT
Mirror tilt angle (1)(2)(3)(4)Landed State15.617.518.4degrees
Micromirror crossover time (5)Typical Performance13µS
Micromirror switching time (6)Typical Performance10
Number of out-of-specification micromirrors (7)Adjacent micromirrors0micromirrors
Non-Adjacent micromirrors10
DMD Photopic Efficiency(8)420 nm – 700 nm65%
Measured relative to the plane formed by the overall micromirror array
Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable nonuniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations, system contrast variations, and optical power variations.
When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction. See Figure 6-10.
The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
The minimum time between successive transitions of a micromirror.
An out-of-specification micromirror is defined as a micromirror that is unable to transition between the two landed states within the specified micromirror switching time.
Efficiency numbers assume 35-degree illumination angle, F/2.4 illumination and collection cones, uniform source spectrum, and uniform pupil illumination.
  • Window Transmission 94% (double Pass, Through Two Window Surfaces)
  • Micromirror Reflectivity 88%
  • Array Diffraction Efficiency 84% (@f/2.4)
  • Array Fill Factor 93%
Efficiency numbers assume 100% electronic mirror duty cycle and do not include optical overfill loss. Note that this number is specified under conditions described above and deviations from the specified conditions result in decreased efficiency.
GUID-789D67EE-F495-4018-A975-3950CB22C06F-low.gifFigure 6-10 Micromirror Landed Orientation and Tilt