ZHCSC08C December   2013  – August 2015 DLPC6401

PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics (Normal Mode)
    7. 6.7  System Oscillators Timing Requirements
    8. 6.8  Test and Reset Timing Requirements
    9. 6.9  JTAG Interface: I/O Boundary Scan Application Timing Requirements
    10. 6.10 Port 1 Input Pixel Interface Timing Requirements
    11. 6.11 Port 2 Input Pixel Interface (FPD-Link Compatible LVDS Input) Timing Requirements
    12. 6.12 Synchronous Serial Port (SSP) Interface Timing Requirements
    13. 6.13 Programmable Output Clocks Switching Characteristics
    14. 6.14 Synchronous Serial Port (SSP) Interface Switching Characteristics
    15. 6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 System Reset Operation
        1. 7.3.1.1 Power-Up Reset Operation
        2. 7.3.1.2 System Reset Operation
        3. 7.3.1.3 Spread Spectrum Clock Generator Support
        4. 7.3.1.4 GPIO Interface
        5. 7.3.1.5 Source Input Blanking
        6. 7.3.1.6 Video and Graphics Processing Delay
      2. 7.3.2 Program Memory Flash/SRAM Interface
        1. 7.3.2.1 Calibration and Debug Support
        2. 7.3.2.2 Board-Level Test Support
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Recommended MOSC Crystal Oscillator Configuration
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 System Power Regulation
    2. 9.2 System Power-Up Sequence
    3. 9.3 Power-On Sense (POSENSE) Support
    4. 9.4 System Environment and Defaults
      1. 9.4.1 DLPC6401 System Power-Up and Reset Default Conditions
      2. 9.4.2 1.2-V System Power
      3. 9.4.3 1.8-V System Power
      4. 9.4.4 1.9-V System Power
      5. 9.4.5 3.3-V System Power
      6. 9.4.6 FPD-Link Input LVDS System Power
      7. 9.4.7 Power Good (PWRGOOD) Support
      8. 9.4.8 5-V Tolerant Support
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Layout Guidelines for Internal ASIC Power
      2. 10.1.2 PCB Layout Guidelines for Quality Auto-Lock Performance
      3. 10.1.3 DMD Interface Considerations
      4. 10.1.4 General Handling Guidelines for Unused CMOS-Type Pins
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11器件和文档支持
    1. 11.1 器件支持
      1. 11.1.1 器件命名规则
        1. 11.1.1.1 视频时序参数定义
        2. 11.1.1.2 器件标记
    2. 11.2 社区资源
    3. 11.3 商标
    4. 11.4 静电放电警告
    5. 11.5 Glossary
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

6 Specifications

6.1 Absolute Maximum Ratings

over recommended operating free-air temperature (unless otherwise noted) (1)
MIN MAX UNIT
ELECTRICAL
Supply voltage(2) VDDC (core 1.2-V power) –0.5 1.7 V
VDD33 (CMOS I/O) –0.5 3.8
VDD_DMD (DMD driver power) –0.5 2.3
VDD12_FPD (FPD-Link LVDS interface 1.2-V power) –0.5 1.7
VDD33_FPD (FPD-Link LVDS interface 3.3-V power) –0.5 3.8
VDD12_PLLD (DDR clock generator – digital) –0.5 1.7
VDD12_PLLM (master clock generator – digital) –0.5 1.7
VDD_18_PLLD (DDR clock generator – analog) –0.5 2.3
VDD_18_PLLM (master clock generator – analog) –0.5 2.3
VI Input voltage(3) OSC (BC1850) –0.3 3.6
LVCMOS (BT3350) –0.5 3.6
I2C (BT3350) –0.5 3.6
LVDS (BT3350) –0.5 3.6
VO Output voltage DMD LPDDR (BC1850) –0.3 2.0
LVCMOS (BT3350) –0.5 3.6
I2C (BT3350) –0.5  3.6
ENVIRONMENTAL
TJ Operating junction temperature 0 115 °C  
Tstg Storage temperature –40 125 °C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to GND.
(3) Applies to external input and bidirectional buffers.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±500
Machine model (MM) ±150
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
I/O(1) MIN NOM MAX UNIT
VDD33 3.3-V supply voltage, I/O 3.135 3.3 3.465 V
VDD_DMD 1.9-V supply voltage, I/O 1.8 1.9 2 V
VDD_18_PLLD 1.8-V supply voltage, PLL analog 1.71 1.8 1.89 V
VDD_18_PLLM 1.8-V supply voltage, PLL analog 1.71 1.8 1.89 V
VDD12 1.2-V supply voltage, core logic 1.116 1.2 1.26 V
VDD12_PLLD 1.2-V supply voltage, PLL digital 1.116 1.2 1.26 V
VDD12_PLLM 1.2-V supply voltage, PLL digital 1.116 1.2 1.26 V
VI Input voltage OSC (10) 0 VDD33 V
3.3-V LVCMOS (1, 2, 3, 4) 0 VDD33
3.3-V I2C (8) 0 VDD33
3.3-V LVDS (5) 0.6 2.2
VO Output voltage 3.3-V LVCMOS (1, 2, 3, 4) 0 VDD33 V
3.3-V I2C (8) 0 VDD33
1.9-V LPDDR (7) 0 VDD_DMD
TA Operating ambient temperature range See (2) 0 55 °C
TC Operating top-center case temperature See (3)(4) 0 104 °C
TJ Operating junction temperature 0 105 °C
(1) The number inside each parenthesis for the I/O refers to the type defined in the I/O type subscript definition section.
(2) Assumes a minimum 1-m/s airflow along with the JEDEC thermal resistance and associated conditions as listed www.ti.com/packaging. Thus, this is an approximate value that varies with environment and PCB design.
(3) Maximum thermal values assume maximum power of 3 W.
(4) Assume ψJT equals 0.33 C/W.

6.4 Thermal Information(1)

THERMAL METRIC(1) DLPC6401 UNIT
ZFF (BGA)
419 PINS
ψJT Junction-to-top characterization parameter 0.33 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report, SPRA953.

6.5 Electrical Characteristics(1)

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIH High-level input threshold voltage OSC (10) 2 V
3.3-V LVCMOS (1, 2, 3, 4) 2
3.3-V I2C (8) 2.4
VIL Low-level input threshold voltage OSC (10) 0.8 V
3.3-V LVCMOS (1, 2, 3, 4) 0.8
3.3-V I2C (8) 1
RI Receiver input impedance 3.3-V LVDS (5) VDDH = 3.3 V 90 110 132 Ω
Vidth Input differential threshold 3.3-V LVDS (5) –200 200 mV
|Vid| Absolute input differential voltage 3.3-V LVDS (5) 200 600 mV
VICM Input common mode voltage range 3.3-V LVDS (5) At minimum absolute input differential voltage 0.7 2.1 V
3.3-V LVDS (5) At max absolute input differential voltage 0.9 1.9
VHYS Hysteresis (VT+ – VT–) 3.3-V LVCMOS (1, 2, 3, 4) 400 mV
3.3-V I2C (8) 550
VOH High-level output voltage 3.3-V LVCMOS (1, 2, 3) IOH = Max rated 2.8 V
1.9-V DMD LPDDR (7) IOH = –0.1 mA 0.9 × VDD_DMD
VOL Low-level output voltage 1.9-V DMD LPDDR (7) IOL = 0.1 mA 0.1 × VDD_DMD V
3.3-V LVCMOS (1, 2, 3) IOL = Max rated 0.4
3.3-V I2C (8) IOL = 3-mA sink 0.4
IIH High-level input current OSC (10) 10.0 µA
3.3-V LVCMOS (1 to 4) (without internal pulldown) VIH = VDD33 10
3.3 V LVCMOS (1 to 4) (with internal pulldown) VIH = VDD33 200
3.3 V I2C (8) VIH = VDD33 10
IIL Low-level input current OSC (10) –10.0 µA
3.3-V LVCMOS (1 to 4) (without internal pullup) VOH = VDD33 –10
3.3-V LVCMOS (1 to 4) (with internal pullup) VOH = VDD33 –200
3.3-V I2C (8) VOH = VDD33 –10
IOH High-level output current 1.9-V DMD LPDDR (7) VO = 1.5 V –4 mA
3.3-V LVCMOS (1) VO = 2.4 V –4
3.3-V LVCMOS (2) VO = 2.4 V –8
3.3-V LVCMOS (3) VO = 2.4 V –12
IOL Low-level output current 1.9-V DMD LPDDR (7) VO = 0.4 V 4 mA
3.3-V LVCMOS (1) VO = 0.4 V 4
3.3-V LVCMOS (2) VO = 0.4 V 8
3.3-V LVCMOS (3) VO = 0.4 V 12
3.3-V I2C (8) 3
IOZ High-impedance leakage current 3.3-V LVCMOS (1, 2, 3) –10 10 µA
3.3-V I2C (8) –10 10
CI Input capacitance (including package) 3.3-V LVCMOS (2) 2.8 3.3 4 pF
3.3-V LVCMOS (4) 2.7 3.4 4.2
3.3-V I2C (8) 3 3.2  3.5
(1) The number inside each parenthesis for the I/O refers to the type defined in Table 1.

6.6 Electrical Characteristics (Normal Mode)

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITION(2) MIN TYP MAX(1) UNIT
ICC12 Supply voltage, 1.2-V core power Normal mode 600 1020 mA
ICC19_DMD Supply voltage, 1.9-V I/O power (DMD LPDDR) Normal mode 30 50 mA
ICC33 Supply voltage, 3.3-V (I/O) power Normal mode 40 70 mA
ICC12_FPD FPD-Link LVDS I/F supply voltage, 1.2-V power Normal mode 60 100 mA
ICC33_FPD FPD-Link LVDS I/F supply voltage, 3.3-V power Normal mode 50 85 mA
ICC12_PLLD Supply voltage, PLL digital power (1.2 V) Normal mode 9 15 mA
ICC12_PLLM Supply voltage, master clock generator PLL digital power (1.2 V) Normal mode 9 15 mA
ICC18_PLLD Supply voltage, PLL analog power (1.8 V) Normal mode 10 16 mA
ICC18_PLLM Supply voltage, master clock generator PLL analog power (1.8 V) Normal mode 10 16 mA
PTOT Total power Normal mode 1225 2200 mW
(1) Maximum power values are estimates and may not reflect the actual final power consumption of DLPC6401 ASIC.
(2) Normal mode refers to ASIC operation during full functionality, active product operation. Typical values correspond to power dissipated on nominal process devices operating at nominal voltage and 70°C junction temperature (approximately 25°C ambient) displaying typical video-graphics content from a high-frequency source. Maximim values correspond to power dissipated on fast process devices operating at high voltage and 105°C junction temperature (approximately 55°C ambient) displaying typical video-graphics content from a high-frequency source. The increased power dissipation observed on fast process devices operated at maximum recommended temperature is primarily a result of increased leakage current.

6.7 System Oscillators Timing Requirements

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
ƒclock Clock frequency, MOSC(1) 31.9968 32.0032 MHz
tc Cycle time, MOSC(1) 31.188 31.256 ns
tw(H) Pulse duration(2), MOSC, high 50% to 50% reference points (signal) 12.5 ns
tw(L) Pulse duration(2), MOSC, low 50% to 50% reference points (signal) 12.5 ns
tt Transition time(2), MOSC, tt = tf / tr 20% to 80% reference points (signal) 7.5 ns
tjp Period jitter(2), MOSC (that is, the deviation in period from ideal period due solely to high-frequency jitter – not spread spectrum clocking) –100 100 ps
(1) The frequency range for MOSC is 32 MHz with ±100 PPM accuracy. (This includes impact to accuracy due to aging, temperature, and trim sensitivity.) The MOSC input cannot support spread spectrum clock spreading.
(2) Applies only when driven by an external digital oscillator.

6.8 Test and Reset Timing Requirements

MIN MAX UNIT
tW1(L) Pulse duration, inactive low, PWRGOOD 50% to 50% reference points (signal) 4 µs
tt1 Transition time, PWRGOOD, tt1 = tf / tr 20% to 80% reference points (signal) 625 µs
tW2(L) Pulse duration, inactive low, POSENSE 50% to 50% reference points (signal) 500 µs
tt2 Transition time, POSENSE, tt2 = tf / tr 20% to 80% reference points (signal) 1 µs
tPH Power hold time, POSENSE remains active after PWGOOD is deasserted 20% to 80% reference points (signal) 500 µs

6.9 JTAG Interface: I/O Boundary Scan Application Timing Requirements

MIN MAX UNIT
ƒclock Clock frequency, TCK 10 MHz
tC Cycle time, TCK 100 ns
tW(H) Pulse duration, high 50% to 50% reference points (signal) 40 ns
tW(L) Pulse duration, low 50% to 50% reference points (signal) 40 ns
tt Transition time, tt = tf / tr 20% to 80% reference points (signal) 5 ns
tSU Setup time, TDI valid before TCK↑ 8 ns
th Hold time, TDI valid after TCK↑ 2 ns
tSU Setup time, TMS1 valid before TCK↑ 8 ns
th Hold time, TMS1 valid after TCK↑ 2 ns

6.10 Port 1 Input Pixel Interface Timing Requirements

MIN MAX UNIT
ƒclock Clock frequency, P1A_CLK, P1B_CLK, P1C_CLK 12 150 MHz
tc Cycle time, P1A_CLK, P1B_CLK, P1C_CLK 6.666 83.33 ns
tw(H) Pulse duration, high 50% to 50% reference points (signal) 2.3 ns
tw(L) Pulse duration, low 50% to 50% reference points (signal) 2.3 ns
tjp Clock period jitter, P1A_CLK, P1B_CLK, P1C_CLK
(that is, the deviation in period from ideal period)
Max ƒclock See (2) ps
tt Transition time, tt = tf / tr, P1A_CLK, P1B_CLK, P1C_CLK 20% to 80% reference points (signal) 0.6 2 ns
tt Transition time, tt = tf / tr, P1_A(9-0), P1_B(9-0) , P1_C(9-0), P1_HSYNC, P1_VSYNC, P1_DATEN 20% to 80% reference points (signal) 0.6 3 ns
tt Transition time, tt = tf / tr, ALF_HSYNC, ALF_VSYNC, ALF_CSYNC(1) 20% to 80% reference points (signal) 0.6 3 ns
SETUP AND HOLD TIMES(3)
tsu Setup time, P1_A(9-0), valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_A(9-0), valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_B(9-0), valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_B(9-0), valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_C(9-0), valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_C(9-0), valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_VSYNC, valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_VSYNC, valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_HSYNC, valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_HSYNC, valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_FIELD, valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_FIELD, valid after P1x_CLK↑↓ 0.8 ns
tsu Setup time, P1_DATEN, valid before P1x_CLK↑↓ 0.8 ns
th Hold time, P1_DATEN, valid after P1x_CLK↑↓ 0.8 ns
(1) ALF_CSYNC, ALF_VSYNC and ALF_HSYNC are asynchronous signals.
(2) Use the following formula to obtain the jitter: Maximum clock jitter = ±[(1 / ƒclock) – 5414 ps].
(3) Setup and hold times should be considered the same regardless of clock used [P1A_CLK, P1B_CLK, P1C_CLK].

6.11 Port 2 Input Pixel Interface (FPD-Link Compatible LVDS Input) Timing Requirements(1)(2)(3)(4)(5)(6)

MIN MAX UNIT
ƒclock Clock frequency, P2_CLK (LVDS input clock) 20 90 MHz
tc Cycle time, P2_CLK (LVDS input clock) 11.1 50 ns
tslew Clock or data slew rate (ƒpxck < 90 MHz) 0.3 V/ns
Clock or data slew rate (ƒpxck > 90 MHz) 0.5 V/ns
tstartup Link start-up time (internal) 1 ms
(1) Minimize crosstalk and match traces on the PCB as close as possible.
(2) Maintain the common mode voltage as close to 1.2 V as possible.
(3) Maintain the absolute input differential voltage as high as possible.
(4) The LVDS open input detection is related to a low common mode voltage only. It is not related to a low-differential swing.
(5) LVDS power 3.3-V supply (VDD33_FPD) noise level should be below 100 mVPP.
(6) LVDS power 1.2-V supply (VDD12_FPD) noise level should be below 60 mVPP.

6.12 Synchronous Serial Port (SSP) Interface Timing Requirements

MIN MAX UNIT
tsu Setup time, SSP0_RXD valid before SSP0_ CLK↓ 10 ns
th Hold time, SSP0_RXD valid after SSP0_ CLK↓ 10 ns
tt Transition time(1), SSP0_RXD, tt = tf / tr 4 ns
tsu Setup time, SSP1_RXD valid before SSP1_ CLK↓ 10 ns
th Hold time, SSP1_RXD valid after SSP1_ CLK↓ 10 ns
tt Transition time(1), SSP1_RXD, tt = tf / tr 4 ns
(1) 20% to 80% reference points (signal)

6.13 Programmable Output Clocks Switching Characteristics

over operating free-air temperature range, CL (min timing) = 5 pF, CL (max timing) = 50 pF (unless otherwise noted) (see Figure 5)
PARAMETER FROM (INPUT) TO (OUTPUT) MIN MAX UNIT
ƒclock Clock frequency, OCLKC(1) N/A OCLKC 0.7759 48 MHz
tc Cycle time, OCLKC(1) N/A OCLKC 20.83 1288.8 ns
tw(H) Pulse duration, high 50% to 50% reference points (signal) N/A OCLKC (tc / 2) – 2 ns
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal) N/A OCLKC (tc / 2) – 2 ns
ƒclock Clock frequency, OCLKD(1) N/A OCLKD 0.7759 48 MHz
tc Cycle time, OCLKD N/A OCLKD 20.83 1288.8 ns
tw(H) Pulse duration, high(2) 50% to 50% reference points (signal) N/A OCLKD (tc / 2) – 2 ns
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal) N/A OCLKD (tc / 2) – 2 ns
ƒclock Clock frequency, OCLKE(1) N/A OCLKE 0.7759 48 MHz
tc Cycle time, OCLKE N/A OCLKE 20.83 1288.8 ns
tw(H) Pulse duration, high(2) 50% to 50% reference points (signal) N/A OCLKE (tc / 2) – 2 ns
tw(L) Pulse duration, low(2) 50% to 50% reference points (signal) N/A OCLKE (tc / 2) – 2 ns
(1) The frequency of OCLKC through OCLKE is programmable.
(2) The duty cycle of OCLKC through OCLKE is within ±2 ns of 50%.

6.14 Synchronous Serial Port (SSP) Interface Switching Characteristics

over recommended operating conditions, CL (min timing) = 5 pF, CL (max timing) = 35 pF (unless otherwise noted) (see Figure 10)
PARAMETER FROM (INPUT) TO (OUTPUT) MIN MAX UNIT
ƒclock Clock frequency, SSP0_CLK (1)(2) N/A SSP0_CLK 0.287 9333 kHz
tc Cycle time, SSP0_CLK N/A SSP0_CLK 0.107 3483 us
tw(H) Pulse duration, high 50% to 50% reference points (signal) N/A SSP0_CLK 48 ns
tw(L) Pulse duration, low 50% to 50% reference points (signal) N/A SSP0_CLK 48 ns
tpd Output propagation, clock to Q, SSP0_TXD SSP0_CLK↑ SSP0_TXD –5 5 ns
ƒclock Clock frequency, SSP1_CLK (1)(2) N/A SSP1_CLK 2.296 74667 kHz
tc Cycle time, SSP1_CLK N/A SSP1_CLK 0.013 436 us
tw(H) Pulse duration, high 50% to 50% reference points (signal) N/A SSP1_CLK 5.85 ns
tw(L) Pulse duration, low 50% to 50% reference points (signal) N/A SSP1_CLK 5.85 ns
tpd Output propagation, clock to Q, SSP1_TXD SSP1_CLK↑ SSP1_TXD –2 2 ns
(1) SSP output timing supports both positive and negative clocking polarity. Figure 10 shows only positive clocking polarity. When the clock polarity is configured through software to be negative, the data is transferred and captured on the opposite edge of the clock shown.
(2) The maximum rates shown apply to master mode operation only. Slave mode operation is limited to 1/6 of these rates.

6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics

Over operating free-air temperature range, CL (min timing) = 5 pF, CL (max timing) = 85 pF (unless otherwise noted)
PARAMETER FROM (INPUT) TO (OUTPUT) MIN TYP MAX UNIT
tpd Output propagation, clock to Q TCK↓ TDO1 3 12 ns
DLPC6401 System_Oscillators_DLPS031.gif Figure 1. System Oscillators
DLPC6401 Test_and_reset_pwr_up_DLPS031.gif
PWRGOOD has no impact on operation for 60 ms after rising edge of POSENSE.
Figure 2. Power Up
DLPC6401 pwr_up_pwr_down_DLPS031.gif Figure 3. Power Down
DLPC6401 IO_Boundary_Scan_DLPS031.gif Figure 4. I/O Boundary Scan
DLPC6401 Programmable_Output_Clocks_DLPS031.gif Figure 5. Programmable Output Clocks
DLPC6401 Input_Port1_Interface_DLPS031.gif Figure 6. Input Port 1 Interface
DLPC6401 Input_Port2_Interface.gif Figure 7. Input Port 2 (LVDS) Interface
DLPC6401 LVDS_Link_Start-up_Timing_DLPS031.gif Figure 8. (LVDS) Link Start-Up Timing
DLPC6401 LVDS_Clock_Data_Skew_Def_DLPS031.gif Figure 9. (LVDS) Clock – Data Skew Definition
DLPC6401 Synch_Serial_Port_Interface_DLPS031.gif Figure 10. Synchronous Serial Port Interface
DLPC6401 DMD_LPDDR_Interface_DLPS031.gif Figure 11. DMD LPDDR Interface