ZHCSG69E November   2016  – May 2018 DM505

PRODUCTION DATA.  

  1. 1器件概述
    1. 1.1 特性
    2. 1.2 应用
    3. 1.3 说明
    4. 1.4 功能框图
  2. 2修订历史记录
  3. 3Device Comparison
    1. 3.1 Device Comparison Table
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Pin Attributes
    3. 4.3 Signal Descriptions
      1. 4.3.1  VIP
      2. 4.3.2  DSS
      3. 4.3.3  SD_DAC
      4. 4.3.4  ADC
      5. 4.3.5  Camera Control
      6. 4.3.6  CPI
      7. 4.3.7  CSI2
      8. 4.3.8  EMIF
      9. 4.3.9  GPMC
      10. 4.3.10 Timers
      11. 4.3.11 I2C
      12. 4.3.12 UART
      13. 4.3.13 McSPI
      14. 4.3.14 QSPI
      15. 4.3.15 McASP
      16. 4.3.16 DCAN and MCAN
      17. 4.3.17 GMAC_SW
      18. 4.3.18 SDIO Controller
      19. 4.3.19 GPIO
      20. 4.3.20 ePWM
      21. 4.3.21 Emulation and Debug Subsystem
      22. 4.3.22 System and Miscellaneous
        1. 4.3.22.1 Sysboot
        2. 4.3.22.2 Power, Reset and Clock Management (PRCM)
        3. 4.3.22.3 Enhanced Direct Memory Access (EDMA)
        4. 4.3.22.4 Interrupt Controllers (INTC)
      23. 4.3.23 Power Supplies
    4. 4.4 Pin Multiplexing
    5. 4.5 Connections for Unused Pins
  5. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Power on Hour (POH) Limits
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Operating Performance Points
      1. 5.5.1 AVS Requirements
      2. 5.5.2 Voltage And Core Clock Specifications
      3. 5.5.3 Maximum Supported Frequency
    6. 5.6 Power Consumption Summary
    7. 5.7 Electrical Characteristics
      1. Table 5-6   LVCMOS DDR DC Electrical Characteristics
      2. Table 5-7   Dual Voltage LVCMOS I2C DC Electrical Characteristics
      3. Table 5-8   IQ1833 Buffers DC Electrical Characteristics
      4. Table 5-9   IHHV1833 Buffers DC Electrical Characteristics
      5. Table 5-10 LVCMOS Analog OSC Buffers DC Electrical Characteristics
      6. Table 5-11 LVCMOS CSI2 DC Electrical Characteristics
      7. Table 5-12 Dual Voltage LVCMOS DC Electrical Characteristics
      8. Table 5-13 Analog-to-Digital ADC Subsystem Electrical Specifications
    8. 5.8 Thermal Characteristics
      1. 5.8.1 Package Thermal Characteristics
    9. 5.9 Timing Requirements and Switching Characteristics
      1. 5.9.1 Timing Parameters and Information
        1. 5.9.1.1 Parameter Information
          1. 5.9.1.1.1 1.8V and 3.3V Signal Transition Levels
          2. 5.9.1.1.2 1.8V and 3.3V Signal Transition Rates
          3. 5.9.1.1.3 Timing Parameters and Board Routing Analysis
      2. 5.9.2 Interface Clock Specifications
        1. 5.9.2.1 Interface Clock Terminology
        2. 5.9.2.2 Interface Clock Frequency
      3. 5.9.3 Power Supply Sequences
      4. 5.9.4 Clock Specifications
        1. 5.9.4.1 Input Clocks / Oscillators
          1. 5.9.4.1.1 OSC0 External Crystal
          2. 5.9.4.1.2 OSC0 Input Clock
          3. 5.9.4.1.3 Auxiliary Oscillator OSC1 Input Clock
            1. 5.9.4.1.3.1 OSC1 External Crystal
            2. 5.9.4.1.3.2 OSC1 Input Clock
          4. 5.9.4.1.4 RC On-die Oscillator Clock
        2. 5.9.4.2 Output Clocks
        3. 5.9.4.3 DPLLs, DLLs
          1. 5.9.4.3.1 DPLL Characteristics
          2. 5.9.4.3.2 DLL Characteristics
            1. 5.9.4.3.2.1 DPLL and DLL Noise Isolation
      5. 5.9.5 Recommended Clock and Control Signal Transition Behavior
      6. 5.9.6 Peripherals
        1. 5.9.6.1  Timing Test Conditions
        2. 5.9.6.2  VIP
        3. 5.9.6.3  DSS
        4. 5.9.6.4  ISS
          1. 5.9.6.4.1 CSI-2 MIPI D-PHY—1.5 V and 1.8 V
        5. 5.9.6.5  EMIF
        6. 5.9.6.6  GPMC
          1. 5.9.6.6.1 GPMC/NOR Flash Interface Synchronous Timing
          2. 5.9.6.6.2 GPMC/NOR Flash Interface Asynchronous Timing
          3. 5.9.6.6.3 GPMC/NAND Flash Interface Asynchronous Timing
        7. 5.9.6.7  GP Timers
          1. 5.9.6.7.1 GP Timer Features
        8. 5.9.6.8  I2C
          1. Table 5-41 Timing Requirements for I2C Input Timings
          2. Table 5-42 Switching Characteristics Over Recommended Operating Conditions for I2C Output Timings
        9. 5.9.6.9  UART
          1. Table 5-43 Timing Requirements for UART
          2. Table 5-44 Switching Characteristics Over Recommended Operating Conditions for UART
        10. 5.9.6.10 McSPI
        11. 5.9.6.11 QSPI
        12. 5.9.6.12 McASP
          1. Table 5-52 Timing Requirements for McASP1
          2. Table 5-53 Timing Requirements for McASP2
          3. Table 5-54 Timing Requirements for McASP3
          4. Table 5-55 Switching Characteristics Over Recommended Operating Conditions for McASP1
          5. Table 5-56 Switching Characteristics Over Recommended Operating Conditions for McASP2
          6. Table 5-57 Switching Characteristics Over Recommended Operating Conditions for McASP3
        13. 5.9.6.13 DCAN and MCAN
          1. 5.9.6.13.1  DCAN
          2. 5.9.6.13.2  MCAN
          3. Table 5-60 Timing Requirements for CAN Receive
          4. Table 5-61 Switching Characteristics Over Recommended Operating Conditions for CAN Transmit
        14. 5.9.6.14 GMAC_SW
          1. 5.9.6.14.1 GMAC MDIO Interface Timings
          2. 5.9.6.14.2 GMAC RGMII Timings
            1. Table 5-65 Timing Requirements for rgmiin_rxc - RGMIIn Operation
            2. Table 5-66 Timing Requirements for GMAC RGMIIn Input Receive for 10/100/1000 Mbps
            3. Table 5-67 Switching Characteristics Over Recommended Operating Conditions for rgmiin_txctl - RGMIIn Operation for 10/100/1000 Mbit/s
            4. Table 5-68 Switching Characteristics for GMAC RGMIIn Output Transmit for 10/100/1000 Mbps
        15. 5.9.6.15 SDIO Controller
          1. 5.9.6.15.1 MMC, SD Default Speed
          2. 5.9.6.15.2 MMC, SD High Speed
          3. 5.9.6.15.3 MMC, SD and SDIO SDR12 Mode
          4. 5.9.6.15.4 MMC, SD SDR25 Mode
        16. 5.9.6.16 GPIO
      7. 5.9.7 Emulation and Debug Subsystem
        1. 5.9.7.1 JTAG Electrical Data/Timing
          1. Table 5-79 Timing Requirements for IEEE 1149.1 JTAG
          2. Table 5-80 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG
          3. Table 5-81 Timing Requirements for IEEE 1149.1 JTAG With RTCK
          4. Table 5-82 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG With RTCK
        2. 5.9.7.2 Trace Port Interface Unit (TPIU)
          1. 5.9.7.2.1 TPIU PLL DDR Mode
  6. 6Detailed Description
    1. 6.1  Description
    2. 6.2  Functional Block Diagram
    3. 6.3  DSP Subsystem
    4. 6.4  IPU
    5. 6.5  EVE
    6. 6.6  Memory Subsystem
      1. 6.6.1 EMIF
      2. 6.6.2 GPMC
      3. 6.6.3 ELM
      4. 6.6.4 OCMC
    7. 6.7  Interprocessor Communication
      1. 6.7.1 Mailbox
      2. 6.7.2 Spinlock
    8. 6.8  Interrupt Controller
    9. 6.9  EDMA
    10. 6.10 Peripherals
      1. 6.10.1  VIP
      2. 6.10.2  DSS
      3. 6.10.3  ADC
      4. 6.10.4  ISS
      5. 6.10.5  Timers
        1. 6.10.5.1 General-Purpose Timers
        2. 6.10.5.2 32-kHz Synchronized Timer (COUNTER_32K)
      6. 6.10.6  I2C
      7. 6.10.7  UART
        1. 6.10.7.1 UART Features
      8. 6.10.8  McSPI
      9. 6.10.9  QSPI
      10. 6.10.10 McASP
      11. 6.10.11 DCAN
      12. 6.10.12 MCAN
      13. 6.10.13 GMAC_SW
      14. 6.10.14 SDIO
      15. 6.10.15 GPIO
      16. 6.10.16 ePWM
      17. 6.10.17 eCAP
      18. 6.10.18 eQEP
    11. 6.11 On-Chip Debug
  7. 7Applications, Implementation, and Layout
    1. 7.1  Introduction
      1. 7.1.1 Initial Requirements and Guidelines
    2. 7.2  Power Optimizations
      1. 7.2.1 Step 1: PCB Stack-up
      2. 7.2.2 Step 2: Physical Placement
      3. 7.2.3 Step 3: Static Analysis
        1. 7.2.3.1 PDN Resistance and IR Drop
      4. 7.2.4 Step 4: Frequency Analysis
      5. 7.2.5 System ESD Generic Guidelines
        1. 7.2.5.1 System ESD Generic PCB Guideline
        2. 7.2.5.2 Miscellaneous EMC Guidelines to Mitigate ESD Immunity
        3. 7.2.5.3 ESD Protection System Design Consideration
      6. 7.2.6 EMI / EMC Issues Prevention
        1. 7.2.6.1 Signal Bandwidth
        2. 7.2.6.2 Signal Routing
          1. 7.2.6.2.1 Signal Routing—Sensitive Signals and Shielding
          2. 7.2.6.2.2 Signal Routing—Outer Layer Routing
        3. 7.2.6.3 Ground Guidelines
          1. 7.2.6.3.1 PCB Outer Layers
          2. 7.2.6.3.2 Metallic Frames
          3. 7.2.6.3.3 Connectors
          4. 7.2.6.3.4 Guard Ring on PCB Edges
          5. 7.2.6.3.5 Analog and Digital Ground
    3. 7.3  Core Power Domains
      1. 7.3.1 General Constraints and Theory
      2. 7.3.2 Voltage Decoupling
      3. 7.3.3 Static PDN Analysis
      4. 7.3.4 Dynamic PDN Analysis
      5. 7.3.5 Power Supply Mapping
      6. 7.3.6 DPLL Voltage Requirement
      7. 7.3.7 Loss of Input Power Event
      8. 7.3.8 Example PCB Design
        1. 7.3.8.1 Example Stack-up
        2. 7.3.8.2 vdd_dspeve Example Analysis
    4. 7.4  Single-Ended Interfaces
      1. 7.4.1 General Routing Guidelines
      2. 7.4.2 QSPI Board Design and Layout Guidelines
        1. 7.4.2.1 If QSPI is operated in Mode 0 (POL=0, PHA=0):
        2. 7.4.2.2 If QSPI is operated in Mode 3 (POL=1, PHA=1):
    5. 7.5  Differential Interfaces
      1. 7.5.1 General Routing Guidelines
      2. 7.5.2 CSI2 Board Design and Routing Guidelines
        1. 7.5.2.1 CSI2_0 MIPI CSI-2 (1.5 Gbps)
          1. 7.5.2.1.1 General Guidelines
          2. 7.5.2.1.2 Length Mismatch Guidelines
            1. 7.5.2.1.2.1 CSI2_0 MIPI CSI-2 (1.5 Gbps)
          3. 7.5.2.1.3 Frequency-domain Specification Guidelines
    6. 7.6  Clock Routing Guidelines
      1. 7.6.1 Oscillator Ground Connection
    7. 7.7  LPDDR2 Board Design and Layout Guidelines
      1. 7.7.1 LPDDR2 Board Designs
      2. 7.7.2 LPDDR2 Device Configurations
      3. 7.7.3 LPDDR2 Interface
        1. 7.7.3.1 LPDDR2 Interface Schematic
        2. 7.7.3.2 Compatible JEDEC LPDDR2 Devices
        3. 7.7.3.3 LPDDR2 PCB Stackup
        4. 7.7.3.4 LPDDR2 Placement
        5. 7.7.3.5 LPDDR2 Keepout Region
        6. 7.7.3.6 LPDDR2 Net Classes
        7. 7.7.3.7 LPDDR2 Signal Termination
        8. 7.7.3.8 LPDDR2 DDR_VREF Routing
      4. 7.7.4 Routing Specification
        1. 7.7.4.1 DQS[x] and DQ[x] Routing Specification
        2. 7.7.4.2 CK and ADDR_CTRL Routing Specification
    8. 7.8  DDR2 Board Design and Layout Guidelines
      1. 7.8.1 DDR2 General Board Layout Guidelines
      2. 7.8.2 DDR2 Board Design and Layout Guidelines
        1. 7.8.2.1 Board Designs
        2. 7.8.2.2 DDR2 Interface
          1. 7.8.2.2.1  DDR2 Interface Schematic
          2. 7.8.2.2.2  Compatible JEDEC DDR2 Devices
          3. 7.8.2.2.3  PCB Stackup
          4. 7.8.2.2.4  Placement
          5. 7.8.2.2.5  DDR2 Keepout Region
          6. 7.8.2.2.6  Bulk Bypass Capacitors
          7. 7.8.2.2.7  High-Speed Bypass Capacitors
          8. 7.8.2.2.8  Net Classes
          9. 7.8.2.2.9  DDR2 Signal Termination
          10. 7.8.2.2.10 VREF Routing
        3. 7.8.2.3 DDR2 CK and ADDR_CTRL Routing
    9. 7.9  DDR3 Board Design and Layout Guidelines
      1. 7.9.1 DDR3 General Board Layout Guidelines
      2. 7.9.2 DDR3 Board Design and Layout Guidelines
        1. 7.9.2.1  Board Designs
        2. 7.9.2.2  DDR3 Device Combinations
        3. 7.9.2.3  DDR3 Interface Schematic
          1. 7.9.2.3.1 32-Bit DDR3 Interface
          2. 7.9.2.3.2 16-Bit DDR3 Interface
        4. 7.9.2.4  Compatible JEDEC DDR3 Devices
        5. 7.9.2.5  PCB Stackup
        6. 7.9.2.6  Placement
        7. 7.9.2.7  DDR3 Keepout Region
        8. 7.9.2.8  Bulk Bypass Capacitors
        9. 7.9.2.9  High-Speed Bypass Capacitors
          1. 7.9.2.9.1 Return Current Bypass Capacitors
        10. 7.9.2.10 Net Classes
        11. 7.9.2.11 DDR3 Signal Termination
        12. 7.9.2.12 VTT
        13. 7.9.2.13 CK and ADDR_CTRL Topologies and Routing Definition
          1. 7.9.2.13.1 Three DDR3 Devices
            1. 7.9.2.13.1.1 CK and ADDR_CTRL Topologies, Three DDR3 Devices
            2. 7.9.2.13.1.2 CK and ADDR_CTRL Routing, Three DDR3 Devices
          2. 7.9.2.13.2 Two DDR3 Devices
            1. 7.9.2.13.2.1 CK and ADDR_CTRL Topologies, Two DDR3 Devices
            2. 7.9.2.13.2.2 CK and ADDR_CTRL Routing, Two DDR3 Devices
          3. 7.9.2.13.3 One DDR3 Device
            1. 7.9.2.13.3.1 CK and ADDR_CTRL Topologies, One DDR3 Device
            2. 7.9.2.13.3.2 CK and ADDR/CTRL Routing, One DDR3 Device
        14. 7.9.2.14 Data Topologies and Routing Definition
          1. 7.9.2.14.1 DQS and DQ/DM Topologies, Any Number of Allowed DDR3 Devices
          2. 7.9.2.14.2 DQS and DQ/DM Routing, Any Number of Allowed DDR3 Devices
        15. 7.9.2.15 Routing Specification
          1. 7.9.2.15.1 CK and ADDR_CTRL Routing Specification
          2. 7.9.2.15.2 DQS and DQ Routing Specification
    10. 7.10 CVIDEO/SD-DAC Guidelines and Electrical Data/Timing
  8. 8Device and Documentation Support
    1. 8.1 Device Nomenclature
      1. 8.1.1 Standard Package Symbolization
      2. 8.1.2 Device Naming Convention
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
      1. 8.3.1 FCC Warning
      2. 8.3.2 Information About Cautions and Warnings
    4. 8.4 Receiving Notification of Documentation Updates
    5. 8.5 Community Resources
    6. 8.6 Trademarks
      1. 8.6.1 静电放电警告
    7. 8.7 出口管制提示
    8. 8.8 术语表
  9. 9Mechanical Packaging Information
    1. 9.1 Mechanical Data

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Step 3: Static Analysis

Delivering reliable power to circuits is always of critical importance because voltage drops (also known as IR drops) can happen at every level within an electronic system, on-chip, within a package, and across the board. Robust system performance can only be ensured by understanding how the system elements will perform under typical stressful Use Cases. Therefore, it is a good practice to perform a Static or DC Analysis.

Static or DC analysis and design methodology results in a PDN design that minimizes voltage or IR drops across power and ground planes, traces and vias. This ensures the application processor’s internal transistors will be operating within their specified voltage ranges for proper functionality. The amount of IR drop that will be encounter is based upon amount power drawn for a desired Use Case and PCB trace (widths, geometry and number of parallel traces) and via (size, type and number) characteristics.

Components that are distant from their power source are particularly susceptible to IR drop. Designs that rely on battery power must minimize voltage drops to avoid unacceptable power loss that can negatively impact system performance. Early assessments a PDN’s static (DC) performance helps to determine basic power distribution parameters such as best system input power point, optimal PCB layer stackup, and copper area needed for load currents.

DM505 SPRS91v_PCB_STATIC_01.gifFigure 7-3 Depiction of Sheet Resistivity and Resistance

Ohm’s Law (V = I × R) relates conduction current to voltage drop. At DC, the relation coefficient is a constant and represents the resistance of the conductor. Even current carrying conductors will dissipate power at high currents even though their resistance may be very small. Both voltage drop and power dissipation are proportional to the resistance of the conductor.

Figure 7-4 shows a PCB-level static IR drop budget defined between the power management device (PMIC) pins and the application processor’s balls when the PMIC is supplying power.

  • It is highly recommended to physically place the PMIC as close as possible to the processor and on the same side. The orientation of the PMIC vs. the processor should be aligned to minimize distance for the highest current rail.
DM505 SPRS91v_PCB_STATIC_02.gifFigure 7-4 Static IR Drop Budget for PCB Only

The system-level IR drop budget is made up of three portions: on-chip, package, and PCB board. Static IR or dc analysis/design methodology consists of designing the PDN such that the voltage drop (under dc operating conditions) across power and ground pads of the transistors of the application processor device is within a specified value of the nominal voltage for proper functionality of the device.

A PCB system-level voltage drop budget for proper device functionality is typically 1.5% of nominal voltage. For a 1.35-V supply, this would be ≤20 mV.

To accurately analyze PCB static IR drop, the actual geometry of the PDN must be modeled properly and simulated to accurately characterize long distribution paths, copper weight impacts, electro-migration violations of current-carrying vias, and "Swiss-cheese” effects via placement has on power rails. It is recommended to perform the following analyses:

  • Lumped resistance/IR drop analysis
  • Distributed resistance/IR drop analysis

NOTE

The PMIC companion device supporting Processor has been designed with voltage sensing feedback loop capabilities that enable a remote sense of the SMPS output voltage at the point of use.

The NOTE above means the SMPS feedback signals and returns must be routed across PCB and connected to the Device input power ball for which a particular SMPS is supplying power. This feedback loop provides compensation for some of the voltage drop encountered across the PDN within limits. As such, the effective resistance of the PDN within this loop should be determined in order to optimize voltage compensation loop performance. The resistance of two PDN segments are of interest: one from the power inductor/bulk power filtering capacitor node to the Processor’s input power and second is the entire PDN route from SMPS output pin/ball to the Processor input power.

In the following sections each methodology is described in detail and an example has been provided of analysis flow that can be used by the PCB designer to validate compliance to the requirements on their PCB PDN design.