SNOSAX1F May   2008  – September 2015 DP83849I

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 System Diagram
  2. Revision History
  3. Terminal Configuration and Functions
    1. 3.1 Pin Assignments
    2. 3.2 Signal Descriptions
      1. 3.2.1  Serial Management Interface
      2. 3.2.2  Clock Interface
      3. 3.2.3  MAC Data Interface
      4. 3.2.4  LED Interface
      5. 3.2.5  JTAG Interface
      6. 3.2.6  Reset and Power Down
      7. 3.2.7  Strap Options
      8. 3.2.8  PMD Interface for 10 Mb/s and 100 Mb/s
      9. 3.2.9  Special Connections
      10. 3.2.10 Power Supply Pins
  4. Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 ESD Ratings
    3. 4.3 Recommended Operating Conditions
    4. 4.4 Thermal Information
    5. 4.5 DC Specifications
    6. 4.6 AC Timing Requirements
  5. Detailed Description
    1. 5.1 Overview
    2. 5.2 Functional Block Diagram
    3. 5.3 Feature Description
      1. 5.3.1 Auto-Negotiation
        1. 5.3.1.1 Auto-Negotiation Pin Control
        2. 5.3.1.2 Auto-Negotiation Register Control
        3. 5.3.1.3 Auto-Negotiation Parallel Detection
        4. 5.3.1.4 Auto-Negotiation Restart
        5. 5.3.1.5 Auto-Negotiation Complete Time
        6. 5.3.1.6 Enabling Auto-Negotiation Through Software
      2. 5.3.2 Auto-MDIX
      3. 5.3.3 LED Interface
        1. 5.3.3.1 LEDs
        2. 5.3.3.2 LED Direct Control
      4. 5.3.4 Internal Loopback
      5. 5.3.5 BIST
      6. 5.3.6 Energy Detect Mode
      7. 5.3.7 Link Diagnostic Capabilities
        1. 5.3.7.1 Linked Cable Status
        2. 5.3.7.2 Polarity Reversal
          1. 5.3.7.2.1 Cable Swap Indication
          2. 5.3.7.2.2 100 MB Cable Length Estimation
          3. 5.3.7.2.3 Frequency Offset Relative to Link Partner
          4. 5.3.7.2.4 Cable Signal Quality Estimation
          5. 5.3.7.2.5 Link Quality Monitor
        3. 5.3.7.3 Link Quality Monitor Control and Status
          1. 5.3.7.3.1 Checking Current Parameter Values
          2. 5.3.7.3.2 Threshold Control
        4. 5.3.7.4 TDR Cable Diagnostics
          1. 5.3.7.4.1 TDR Pulse Generator
          2. 5.3.7.4.2 TDR Pulse Monitor
          3. 5.3.7.4.3 TDR Control Interface
          4. 5.3.7.4.4 TDR Results
    4. 5.4 Device Functional Modes
      1. 5.4.1 MII Interface
        1. 5.4.1.1 Nibble-wide MII Data Interface
        2. 5.4.1.2 Collision Detect
        3. 5.4.1.3 Carrier Sense
      2. 5.4.2 Reduced MII Interface
      3. 5.4.3 802.3u MII Serial Management Interface
        1. 5.4.3.1 Serial Management Register Access
        2. 5.4.3.2 Serial Management Preamble Suppression
        3. 5.4.3.3 Simultaneous Register Write
      4. 5.4.4 MAC Interface
        1. 5.4.4.1 10-Mb Serial Network Interface (SNI)
        2. 5.4.4.2 Single Clock MII Mode
        3. 5.4.4.3 Flexible MII Port Assignment
          1. 5.4.4.3.1 RX MII Port Mapping
          2. 5.4.4.3.2 TX MII Port Mapping
          3. 5.4.4.3.3 Common Flexible MII Port Configurations
        4. 5.4.4.4 Strapped Extender Mode
        5. 5.4.4.5 Notes and Restrictions
      5. 5.4.5 PHY Address
        1. 5.4.5.1 MII Isolate Mode
      6. 5.4.6 Half Duplex vs Full Duplex
      7. 5.4.7 Reset Operation
        1. 5.4.7.1 Hardware Reset
        2. 5.4.7.2 Full Software Reset
        3. 5.4.7.3 Soft Reset
    5. 5.5 Programming
      1. 5.5.1 Architecture
        1. 5.5.1.1 100BASE-TX Transmitter
          1. 5.5.1.1.1 Code-group Encoding and Injection
          2. 5.5.1.1.2 Scrambler
          3. 5.5.1.1.3 NRZ to NRZI Encoder
          4. 5.5.1.1.4 Binary to MLT-3 Convertor
      2. 5.5.2 100BASE-TX Receiver
      3. 5.5.3 Analog Front End
        1. 5.5.3.1  Digital Signal Processor
        2. 5.5.3.2  Digital Adaptive Equalization and Gain Control
        3. 5.5.3.3  Signal Detect
        4. 5.5.3.4  MLT-3 to NRZI Decoder
        5. 5.5.3.5  NRZI to NRZ
        6. 5.5.3.6  Serial to Parallel
        7. 5.5.3.7  Descrambler
        8. 5.5.3.8  Code-Group Alignment
        9. 5.5.3.9  4B/5B Decoder
        10. 5.5.3.10 100BASE-TX Link Integrity Monitor
        11. 5.5.3.11 BAD SSD Detection
      4. 5.5.4 10BASE-T Transceiver Module
        1. 5.5.4.1  Operational Modes
        2. 5.5.4.2  Smart Squelch
        3. 5.5.4.3  Collision Detection and SQE
        4. 5.5.4.4  Carrier Sense
        5. 5.5.4.5  Normal Link Pulse Detection/Generation
        6. 5.5.4.6  Jabber Function
        7. 5.5.4.7  Automatic Link Polarity Detection and Correction
        8. 5.5.4.8  Transmit and Receive Filtering
        9. 5.5.4.9  Transmitter
        10. 5.5.4.10 Receiver
    6. 5.6 Register Block
      1. 5.6.1 Register Definition
        1. 5.6.1.1  Basic Mode Control Register (BMCR)
        2. 5.6.1.2  Basic Mode Status Register (BMSR)
        3. 5.6.1.3  PHY Identifier Register #1 (PHYIDR1)
        4. 5.6.1.4  PHY Identifier Register #2 (PHYIDR2)
        5. 5.6.1.5  Auto-Negotiation Advertisement Register (ANAR)
        6. 5.6.1.6  Auto-Negotiation Link Partner Ability Register (ANLPAR) (BASE Page)
        7. 5.6.1.7  Auto-Negotiation Link Partner Ability Register (ANLPAR) (Next Page)
        8. 5.6.1.8  Auto-Negotiate Expansion Register (ANER)
        9. 5.6.1.9  Auto-Negotiation Next Page Transmit Register (ANNPTR)
        10. 5.6.1.10 PHY Status Register (PHYSTS)
        11. 5.6.1.11 MII Interrupt Control Register (MICR)
        12. 5.6.1.12 MII Interrupt Status and Miscellaneous Control Register (MICR)
        13. 5.6.1.13 Page Select Register (PAGESEL)
      2. 5.6.2 Extended Registers - Page 0
        1. 5.6.2.1  False Carrier Sense Counter Register (FCSCR)
        2. 5.6.2.2  Receiver Error Counter Register (RECR)
        3. 5.6.2.3  100 Mb/s PCS Configuration and Status Register (PCSR)
        4. 5.6.2.4  RMII and Bypass Register (RBR)
        5. 5.6.2.5  LED Direct Control Register (LEDCR)
        6. 5.6.2.6  PHY Control Register (PHYCR)
        7. 5.6.2.7  10BASE-T Status/Control Register (10BTSCR)
        8. 5.6.2.8  CD Test and BIST Extensions Register (CDCTRL1)
        9. 5.6.2.9  Phy Control Register 2 (PHYCR2)
        10. 5.6.2.10 Energy Detect Control (EDCR)
      3. 5.6.3 Link Diagnostics Registers - Page 2
        1. 5.6.3.1  100Mb Length Detect Register (LEN100_DET), Page 2, address 14h
        2. 5.6.3.2  100Mb Frequency Offset Indication Register (FREQ100), Page 2, address 15h
        3. 5.6.3.3  TDR Control Register (TDR_CTRL), Page 2, address 16h
        4. 5.6.3.4  TDR Window Register (TDR_WIN), Page 2, address 17h
        5. 5.6.3.5  TDR Peak Register (TDR_PEAK), Page 2, address 18h
        6. 5.6.3.6  TDR Threshold Register (TDR_THR), Page 2, address 19h
        7. 5.6.3.7  Variance Control Register (VAR_CTRL), Page 2, address 1Ah
        8. 5.6.3.8  Variance Data Register (VAR_DATA), Page 2, address 1Bh
        9. 5.6.3.9  Link Quality Monitor Register (LQMR), Page 2, address 1Dh
        10. 5.6.3.10 Link Quality Data Register (LQDR), Page 2
  6. Applications, Implementation, and Layout
    1. 6.1 Application Information
    2. 6.2 Typical Application
      1. 6.2.1 Design Requirements
      2. 6.2.2 Detailed Design Procedure
        1. 6.2.2.1 TPI Network Circuit
        2. 6.2.2.2 Clock In (X1) Requirements
          1. 6.2.2.2.1 Oscillator
          2. 6.2.2.2.2 Crystal
      3. 6.2.3 Power Feedback Circuit
      4. 6.2.4 Power Down/Interrupt
        1. 6.2.4.1 Power Down Control Mode
        2. 6.2.4.2 Interrupt Mechanisms
      5. 6.2.5 Application Curves
  7. Power Supply Recommendations
  8. Layout
    1. 8.1 Layout Guidelines
      1. 8.1.1 PCB Layer Stacking
    2. 8.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Community Resources
      1. 9.1.1 Community Resources
    2. 9.2 Trademarks
    3. 9.3 Electrostatic Discharge Caution
    4. 9.4 Glossary
  10. 10Mechanical Packaging and Orderable Information
    1. 10.1 Packaging Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

8 Layout

8.1 Layout Guidelines

Place the 49.9-Ω,1% resistors, and 0.1-μF decoupling capacitor near the PHYTER TD± and RD± pins and through directly to the VDD plane.

Stubs must be avoided on all signal traces, especially the differential signal pairs. See Figure 8-1. Within the pairs (for example, TD+ and TD-) the trace lengths must be run parallel to each other and matched in length. Matched lengths minimize delay differences, avoiding an increase in common mode noise and increased EMI. See Figure 8-1.

DP83849I differ_signal_pair_stubs_snls250.gif Figure 8-1 Differential Signal Pair - Stubs

Ideally, there must be no crossover or through on the signal paths. Vias present impedance discontinuities and must be minimized. Route an entire trace pair on a single layer if possible. PCB trace lengths must be kept as short as possible.

Signal traces must not be run such that they cross a plane split. See Figure 8-2. A signal crossing a plane split may cause unpredictable return path currents and would likely impact signal quality as well, potentially creating EMI problems.

DP83849I differ_signal_pair_signal_snls250.png Figure 8-2 Differential Signal Pair-Plane Crossing

MDI signal traces must have 50 Ω to ground or 100-Ω differential controlled impedance. Many tools are available online to calculate this.

8.1.1 PCB Layer Stacking

To meet signal integrity and performance requirements, at minimum a 4-layer PCB is recommended for implementing PHYTER components in end user systems. The following layer stack-ups are recommended for four, six, and eight-layer boards, although other options are possible.

DP83849I pcb_strplne_lay_stckng_snls250.png Figure 8-3 PCB Stripline Layer Stacking

Within a PCB it may be desirable to run traces using different methods, microstrip vs. stripline, depending on the location of the signal on the PCB. For example, it may be desirable to change layer stacking where an isolated chassis ground plane is used. Figure 8-4 illustrates alternative PCB stacking options.

DP83849I alt_pcb_strplne_lay_stckng_snls250.png Figure 8-4 Alternative PCB Stripline Layer Stacking

8.2 Layout Example

DP83849I layout_example_snls250.gif Figure 8-5 Layout Example