SLDS272 September   2024 DRV81620-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
      1. 6.5.1 SPI Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Control Pins
        1. 7.3.1.1 Input Pins
        2. 7.3.1.2 nSLEEP Pin
      2. 7.3.2 Power Supply
        1. 7.3.2.1 Modes of Operation
          1. 7.3.2.1.1 Power-up
          2. 7.3.2.1.2 Sleep mode
          3. 7.3.2.1.3 Idle mode
          4. 7.3.2.1.4 Active mode
          5. 7.3.2.1.5 Limp Home mode
        2. 7.3.2.2 Reset condition
      3. 7.3.3 Power Stage
        1. 7.3.3.1 Switching Resistive Loads
        2. 7.3.3.2 Inductive Output Clamp
        3. 7.3.3.3 Maximum Load Inductance
        4. 7.3.3.4 Reverse Current Behavior
        5. 7.3.3.5 Switching Channels in parallel
        6. 7.3.3.6 Bulb Inrush Mode (BIM)
        7. 7.3.3.7 Integrated PWM Generator
      4. 7.3.4 Protection and Diagnostics
        1. 7.3.4.1 Undervoltage on VM
        2. 7.3.4.2 Overcurrent Protection
        3. 7.3.4.3 Over Temperature Protection
        4. 7.3.4.4 Over Temperature Warning
        5. 7.3.4.5 Over Temperature and Overcurrent Protection in Limp Home mode
        6. 7.3.4.6 Reverse Polarity Protection
        7. 7.3.4.7 Over Voltage Protection
        8. 7.3.4.8 Output Status Monitor
        9. 7.3.4.9 Open Load Detection in ON State
          1. 7.3.4.9.1 Open Load at ON - direct channel diagnosis
          2. 7.3.4.9.2 Open Load at ON - diagnosis loop
          3. 7.3.4.9.3 OLON bit
      5. 7.3.5 SPI Communication
        1. 7.3.5.1 SPI Signal Description
          1. 7.3.5.1.1 Chip Select (nSCS)
            1. 7.3.5.1.1.1 Logic high to logic low Transition
            2. 7.3.5.1.1.2 Logic low to logic high Transition
          2. 7.3.5.1.2 Serial Clock (SCLK)
          3. 7.3.5.1.3 Serial Input (SDI)
          4. 7.3.5.1.4 Serial Output (SDO)
        2. 7.3.5.2 Daisy Chain Capability
        3. 7.3.5.3 SPI Protocol
        4. 7.3.5.4 SPI Registers
          1. 7.3.5.4.1  Standard Diagnosis Register
          2. 7.3.5.4.2  Output control register
          3. 7.3.5.4.3  Bulb Inrush Mode Register
          4. 7.3.5.4.4  Input 0 Mapping Register
          5. 7.3.5.4.5  Input 1 Mapping Register
          6. 7.3.5.4.6  Input Status Monitor Register
          7. 7.3.5.4.7  Open Load Current Control Register
          8. 7.3.5.4.8  Output Status Monitor Register
          9. 7.3.5.4.9  Open Load at ON Register
          10. 7.3.5.4.10 EN_OLON Register
          11. 7.3.5.4.11 Configuration Register
          12. 7.3.5.4.12 Output Clear Latch Register
          13. 7.3.5.4.13 FPWM Register
          14. 7.3.5.4.14 PWM0 Configuration Register
          15. 7.3.5.4.15 PWM1 Configuration Register
          16. 7.3.5.4.16 PWM_OUT Register
          17. 7.3.5.4.17 MAP_PWM Register
          18. 7.3.5.4.18 Configuration 2 Register
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Suggested External Components
    2. 8.2 Layout
      1. 8.2.1 Layout Guidelines
      2. 8.2.2 Package Footprint Compatibility
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Tape and Reel Information

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Integrated PWM Generator

The device has two independent integrated PWM generators. Each PWM generator can be assigned to one or more channels, and can be programmed with a different duty cycle and frequency.

Both PWM generators refer to a base frequency fINT generated by an internal oscillator. This base frequency can be adjusted using FPWM bits as described below.

Table 7-6 FPWM Settings

FPWM Bits

Delta to fINT

0000b

Reserved

0001b

-37.2%

0010b

-31.9%

0011b

-26.9%

0100b

-21%

0101b

-15.5%

0110b

-10.9%

0111b

-5.8%

1000b

-

1001b

+4.3%

1010b

+8.9%

1011b

+14%

1100b

+19.5%

1101b

+25.6%

1110b

+32.4%

1111b

+40%

For each PWM generator, four parameters can be set:

  • Duty cycle (bits DC0 for PWM Generator 0)

    • 8 bits are available to achieve 0.39% duty cycle resolution

    • When the micro-controller programs a new duty cycle, the PWM generator waits until the previous cycleis completed before using the new duty cycle (this happens also when the duty cycle is either 0% or100% - the new duty cycle is taken with the next PWM cycle)

    • The maximum duty cycle achievable is 99.61% (DC0 set to 11111111b). It is possible toachieve 100% by setting FREQ0 to 11b.

  • Frequency (bits FREQ0, FREQ1, FCTR0 and FCTR1 select the divider for fINT to achieve the needed duty cycle)

Table 7-7 PWM Frequency Selection for PWM generator 0

FCTR0

FREQ0

PWM Frequency

0b

00b

fINT/1024 (corresponding to 100 Hz)

0b

01b

fINT/512 (corresponding to 200 Hz)

0b

10b

fINT/256 (corresponding to 400 Hz)

1b

00b

fINT/128 (corresponding to 800 Hz)

1b

01b

fINT/64 (corresponding to 1600 Hz)

1b

10b

fINT/51.2 (corresponding to 2000 Hz)
Table 7-8 PWM Frequency Selection for PWM generator 1

FCTR1

FREQ1

PWM Frequency

0b

00b

fINT/1024 (corresponding to 100 Hz)

0b

01b

fINT/512 (corresponding to 200 Hz)

0b

10b

fINT/256 (corresponding to 400 Hz)

1b

00b

fINT/128 (corresponding to 800 Hz)

1b

01b

fINT/64 (corresponding to 1600 Hz)

1b

10b

fINT/51.2 (corresponding to 2000 Hz)

  • Channel output control and mapping registers PWM_OUT and MAP_PWM

    • Any channel can be mapped to each PWM Generator

    • Together with 2 parallel input it is possible to have 4 independent PWM groups of channels with loweffort from the point of view of micro-controller resources and SPI data traffic.

Figure 7-11 expands the concept shown in adding the PWM Generators.

DRV81620-Q1 PWM Generator MappingFigure 7-11 PWM Generator Mapping