ZHCSPR2C December   2021  – August 2022 DRV8243-Q1

PRODUCTION DATA  

  1. 特性
  2. 应用
  3. 说明
  4. 修订历史记录
  5. 器件比较
  6. 引脚配置和功能
    1. 6.1 HW 型号
      1. 6.1.1 HVSSOP (28) 封装
      2. 6.1.2 VQFN-HR (14) 封装
    2. 6.2 SPI 型号
      1. 6.2.1 HVSSOP (28) 封装
      2. 6.2.2 VQFN-HR (14) 封装
  7. 规格
    1. 7.1 绝对最大额定值
    2. 7.2 ESD 等级
    3. 7.3 建议运行条件
    4. 7.4 热性能信息
    5. 7.5 电气特性
      1. 7.5.1  电源和初始化
      2. 7.5.2  逻辑 I/O
      3. 7.5.3  SPI I/O
      4. 7.5.4  配置引脚 - 仅限 HW 型号
      5. 7.5.5  功率 FET 参数
      6. 7.5.6  具有高侧再循环的开关参数
      7. 7.5.7  具有低侧再循环的开关参数
      8. 7.5.8  IPROPI 和 ITRIP 调节
      9. 7.5.9  过流保护 (OCP)
      10. 7.5.10 过热保护 (TSD)
      11. 7.5.11 电压监控
      12. 7.5.12 负载监测
      13. 7.5.13 故障重试设置
      14. 7.5.14 瞬态热阻抗和电流能力
    6. 7.6 SPI 时序要求
    7. 7.7 开关波形
      1. 7.7.1 输出开关瞬态
        1. 7.7.1.1 高侧再循环
        2. 7.7.1.2 低侧再循环
      2. 7.7.2 唤醒瞬态
        1. 7.7.2.1 HW 型号
        2. 7.7.2.2 SPI 型号
      3. 7.7.3 故障反应瞬态
        1. 7.7.3.1 重试设置
        2. 7.7.3.2 锁存设置
    8. 7.8 典型特性
  8. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
      1. 8.2.1 HW 型号
      2. 8.2.2 SPI 型号
    3. 8.3 特性说明
      1. 8.3.1 外部元件
        1. 8.3.1.1 HW 型号
        2. 8.3.1.2 SPI 型号
      2. 8.3.2 电桥控制
        1. 8.3.2.1 PH/EN 模式
        2. 8.3.2.2 PWM 模式
        3. 8.3.2.3 独立模式
        4. 8.3.2.4 寄存器 - 引脚控制 - 仅限 SPI 型号
      3. 8.3.3 器件配置
        1. 8.3.3.1 压摆率 (SR)
        2. 8.3.3.2 IPROPI
        3. 8.3.3.3 ITRIP 调节
        4. 8.3.3.4 DIAG
          1. 8.3.3.4.1 HW 型号
          2. 8.3.3.4.2 SPI 型号
      4. 8.3.4 保护和诊断
        1. 8.3.4.1 过流保护 (OCP)
        2. 8.3.4.2 过热保护 (TSD)
        3. 8.3.4.3 关断状态诊断 (OLP)
        4. 8.3.4.4 导通状态诊断 (OLA) - 仅限 SPI 型号
        5. 8.3.4.5 VM 过压监视器
        6. 8.3.4.6 VM 欠压监视器
        7. 8.3.4.7 上电复位 (POR)
        8. 8.3.4.8 事件优先级
    4. 8.4 器件功能状态
      1. 8.4.1 休眠状态
      2. 8.4.2 待机状态
      3. 8.4.3 唤醒至待机状态
      4. 8.4.4 活动状态
      5. 8.4.5 nSLEEP 复位脉冲(仅限 HW 型号)
    5. 8.5 编程 - 仅限 SPI 型号
      1. 8.5.1 SPI 接口
      2. 8.5.2 标准帧
      3. 8.5.3 用于多个外设的 SPI 接口
        1. 8.5.3.1 用于多个外设的菊花链帧
    6. 8.6 寄存器映射 - 仅限 SPI 型号
      1. 8.6.1 用户寄存器
  9. 应用和实施
    1. 9.1 应用信息
      1. 9.1.1 负载概要
    2. 9.2 典型应用
      1. 9.2.1 HW 型号
      2. 9.2.2 SPI 型号
  10. 10电源相关建议
    1. 10.1 确定大容量电容器的大小
  11. 11布局
    1. 11.1 布局指南
    2. 11.2 布局示例
  12. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 社区资源
    4. 12.4 商标
  13. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

确定大容量电容器的大小

确定大容量电容器的大小是电机驱动系统设计中的重要因素。具有更大的大容量电容器是有益的,但缺点是成本增加和物理尺寸增大。

所需的局部电容数量取决于多种因素,包括:

  • 电机系统所需的最高电流。
  • 电源的电容和电源提供电流的能力。
  • 电源和电机系统之间的寄生电感量。
  • 可接受的电压纹波。
  • 使用的电机类型(有刷直流、无刷直流和步进电机)。
  • 电机制动方法。

电源和电机驱动系统之间的电感限制了电流随着电源而变化的速率。如果局部大容量电容太小,系统会响应电机电压变化带来的过大的电流需求或转储。当使用足够大的大容量电容时,电机电压保持稳定,并且可以快速提供大电流。

数据表提供了建议值,但需要进行系统级测试来确定大小适中的大容量电容器。

GUID-0DE6B4B2-03F4-4A25-A59F-B4A2D0E9348E-low.gif图 10-1 带外部电源的电机驱动系统设置示例

大容量电容器的额定电压应高于工作电压,以在电机将能量传递给电源时提供裕度。