ZHCSVR5 March   2023 DRV8329-Q1

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级 - 汽车
    3. 6.3 建议运行条件
    4. 6.4 2pkg 热性能信息
    5. 6.5 电气特性
    6. 6.6 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1 三相 BLDC 栅极驱动器
        1. 7.3.1.1 PWM 控制模式
          1. 7.3.1.1.1 6x PWM 模式
          2. 7.3.1.1.2 3x PWM 模式
        2. 7.3.1.2 器件硬件接口
        3. 7.3.1.3 栅极驱动架构
          1. 7.3.1.3.1 传播延迟
          2. 7.3.1.3.2 死区时间和跨导保护
      2. 7.3.2 AVDD 线性稳压器
      3. 7.3.3 引脚图
      4. 7.3.4 低侧电流检测放大器
        1. 7.3.4.1 电流检测工作原理
      5. 7.3.5 栅极驱动器关断序列 (DRVOFF)
      6. 7.3.6 栅极驱动器保护电路
        1. 7.3.6.1 PVDD 电源欠压锁定 (PVDD_UV)
        2. 7.3.6.2 AVDD 上电复位 (AVDD_POR)
        3. 7.3.6.3 GVDD 欠压锁定 (GVDD_UV)
        4. 7.3.6.4 BST 欠压锁定 (BST_UV)
        5. 7.3.6.5 MOSFET VDS 过流保护 (VDS_OCP)
        6. 7.3.6.6 VSENSE 过流保护 (SEN_OCP)
        7. 7.3.6.7 热关断 (OTSD)
    4. 7.4 器件功能模式
      1. 7.4.1 栅极驱动器功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 工作模式
        3. 7.4.1.3 故障复位(nSLEEP 复位脉冲)
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 三相无刷直流电机控制
        1. 8.2.1.1 详细设计过程
          1. 8.2.1.1.1  电机电压
          2. 8.2.1.1.2  自举电容器和 GVDD 电容器选型
          3. 8.2.1.1.3  栅极驱动电流
          4. 8.2.1.1.4  栅极电阻器选型
          5. 8.2.1.1.5  大功率设计中的系统注意事项
            1. 8.2.1.1.5.1 电容器电压等级
            2. 8.2.1.1.5.2 外部功率级元件
            3. 8.2.1.1.5.3 并行 MOSFET 配置
          6. 8.2.1.1.6  死区时间电阻器选型
          7. 8.2.1.1.7  VDSLVL 选择
          8. 8.2.1.1.8  AVDD 功率损耗
          9. 8.2.1.1.9  电流检测和输出滤波
          10. 8.2.1.1.10 功率损耗和结温损耗
      2. 8.2.2 应用曲线
    3. 8.3 电源相关建议
      1. 8.3.1 确定大容量电容器的大小
    4. 8.4 布局
      1. 8.4.1 布局指南
      2. 8.4.2 散热注意事项
        1. 8.4.2.1 功率耗散
  10. 器件和文档支持
    1. 9.1 器件支持
      1. 9.1.1 器件命名规则
    2. 9.2 文档支持
      1. 9.2.1 相关文档
    3. 9.3 相关链接
    4. 9.4 接收文档更新通知
    5. 9.5 社区资源
    6. 9.6 商标
  11. 10修订历史记录
  12. 11机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息
栅极驱动电流

在开启或关闭功率 MOSFET 栅极以开关电机电流时,选择合适的栅极驱动电流至关重要。MOSFET 的栅极驱动电流和输入电容的大小决定了漏源电压压摆率 (VDS)。栅极驱动电流可从 GVDD 流入 MOSFET 栅极 (ISOURCE) 或从 MOSFET 栅极流入 SHx 或 LSS (ISINK)。

使用过高的栅极驱动电流会造成 MOSFET 导通过快,这可能会导致过度振铃、dV/dt 耦合或开关大电流引起的跨导。如果系统中存在寄生电感和电容,则可能会出现电压尖峰或振铃,这可能会损坏 MOSFET 或 DRV8329-Q1 器件。

GUID-8954DDB4-3E7F-4B2B-BB17-9BBBE283E5B7-low.svg图 8-2 高栅极驱动电流的影响

另一方面,使用过低的栅极驱动电流会导致较慢的 VDS 压摆率。由于 RDS,on 开关损耗,MOSFET 的导通速度太慢可能会使 MOSFET 升温。

栅极驱动电流 IGATE、MOSFET 栅漏电荷 QGD 和 VDS 压摆率开关时间 trise,fall 之间的关系如以下公式所示:

方程式 8. SRDS=VDStrise,fall
方程式 9. IGATE=Qgdtrise,fall

建议在较低的栅极驱动电流下进行评估并增加栅极驱动电流设置,避免在初始评估期间因意外操作而造成损坏。