ZHCSX84 October   2024 DRV8376

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 SPI 时序要求
    7. 6.7 SPI 从模式时序
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  输出级
      2. 7.3.2  控制模式
        1. 7.3.2.1 6x PWM 模式(PWM_MODE = 00b 或 01b 或者 MODE_SR 引脚连接至 AGND 或处于高阻态)
        2. 7.3.2.2 3x PWM 模式(xPWM_MODE = 10b 或 11b 或 MODE_SR 引脚连接至 GVDD 或通过 RMODE 连接至 GVDD)
      3. 7.3.3  器件接口模式
        1. 7.3.3.1 串行外设接口 (SPI)
        2. 7.3.3.2 硬件接口
      4. 7.3.4  AVDD 和 GVDD 线性稳压器
      5. 7.3.5  电荷泵
      6. 7.3.6  压摆率控制
      7. 7.3.7  跨导(死区时间)
      8. 7.3.8  传播延迟
      9. 7.3.9  引脚图
        1. 7.3.9.1 逻辑电平输入引脚(内部下拉)
        2. 7.3.9.2 逻辑电平输入引脚(内部上拉)
        3. 7.3.9.3 开漏引脚
        4. 7.3.9.4 推挽引脚
        5. 7.3.9.5 四电平输入引脚
      10. 7.3.10 电流检测放大器
        1. 7.3.10.1 电流检测放大器操作
      11. 7.3.11 主动消磁
        1. 7.3.11.1 自动同步整流模式(ASR 模式)
          1. 7.3.11.1.1 自动同步整流(换向模式)
          2. 7.3.11.1.2 自动同步整流(PWM 模式)
        2. 7.3.11.2 自动异步整流模式(AAR 模式)
      12. 7.3.12 逐周期电流限制
        1. 7.3.12.1 具有 100% 占空比输入的逐周期电流限制
      13. 7.3.13 保护功能
        1. 7.3.13.1 VM 电源欠压锁定 (RESET)
        2. 7.3.13.2 AVDD 欠压保护 (AVDD_UV)
        3. 7.3.13.3 GVDD 欠压锁定 (GVDD_UV)
        4. 7.3.13.4 VCP 电荷泵欠压锁定 (CPUV)
        5. 7.3.13.5 过压保护 (OV)
        6. 7.3.13.6 过流保护 (OCP)
          1. 7.3.13.6.1 OCP 锁存关断 (OCP_MODE = 00b)
          2. 7.3.13.6.2 OCP 自动重试 (OCP_MODE = 01b)
          3. 7.3.13.6.3 OCP 仅报告 (OCP_MODE = 10b)
          4. 7.3.13.6.4 OCP 已禁用 (OCP_MODE = 11b)
        7. 7.3.13.7 热警告 (OTW)
        8. 7.3.13.8 热关断 (OTS)
    4. 7.4 器件功能模式
      1. 7.4.1 功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 运行模式
        3. 7.4.1.3 故障复位(CLR_FLT 或 nSLEEP 复位脉冲)
      2. 7.4.2 DRVOFF 功能
    5. 7.5 SPI 通信
      1. 7.5.1 编程
        1. 7.5.1.1 SPI 格式
    6. 7.6 寄存器映射
      1. 7.6.1 状态寄存器
      2. 7.6.2 控制寄存器
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 电源相关建议
      1. 8.2.1 大容量电容
    3. 8.3 布局
      1. 8.3.1 布局指南
      2. 8.3.2 布局示例
      3. 8.3.3 散热注意事项
        1. 8.3.3.1 功率耗散
  10. 器件和文档支持
    1. 9.1 文档支持
    2. 9.2 支持资源
    3. 9.3 商标
    4. 9.4 静电放电警告
    5. 9.5 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息
    1. 11.1 封装选项附录
    2. 11.2 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
  • NLG|28
散热焊盘机械数据 (封装 | 引脚)
订购信息

布局指南

放置大容量电容器时,应尽量缩短通过电机驱动器器件的大电流路径的距离。连接金属布线宽度应尽可能宽,并且在连接 PCB 层时应使用许多过孔。这些做法可更大限度地减少电感并允许大容量电容器提供大电流。

电荷泵、GVDD、AVDD 和 VREF 电容器等低容值电容器应为陶瓷电容器,并应靠近器件引脚放置。

大电流器件输出应使用宽金属布线。

为减少大瞬态电流进入小电流信号路径的噪声耦合和 EMI 干扰,应在 PGND 和 AGND 之间分区接地。TI 建议将所有非功率级电路(包括散热焊盘)连接到 AGND,以降低寄生效应并改善器件的功率耗散。确保接地端通过网络连接或宽电阻器连接,以减小电压偏移并保持栅极驱动器性能。

器件散热焊盘应焊接到 PCB 顶层接地平面。应使用多个过孔连接到较大的底层接地平面。使用大金属平面和多个过孔有助于散发器件中产生的 I2 × RDS(on) 热量。

为了提高热性能,请在 PCB 的所有可能层上尽可能地增大连接到散热焊盘接地端的接地面积。使用较厚的覆铜可以降低结至空气热阻并改善芯片表面的散热。