ZHCSX84 October   2024 DRV8376

ADVANCE INFORMATION  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较表
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 SPI 时序要求
    7. 6.7 SPI 从模式时序
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  输出级
      2. 7.3.2  控制模式
        1. 7.3.2.1 6x PWM 模式(PWM_MODE = 00b 或 01b 或者 MODE_SR 引脚连接至 AGND 或处于高阻态)
        2. 7.3.2.2 3x PWM 模式(xPWM_MODE = 10b 或 11b 或 MODE_SR 引脚连接至 GVDD 或通过 RMODE 连接至 GVDD)
      3. 7.3.3  器件接口模式
        1. 7.3.3.1 串行外设接口 (SPI)
        2. 7.3.3.2 硬件接口
      4. 7.3.4  AVDD 和 GVDD 线性稳压器
      5. 7.3.5  电荷泵
      6. 7.3.6  压摆率控制
      7. 7.3.7  跨导(死区时间)
      8. 7.3.8  传播延迟
      9. 7.3.9  引脚图
        1. 7.3.9.1 逻辑电平输入引脚(内部下拉)
        2. 7.3.9.2 逻辑电平输入引脚(内部上拉)
        3. 7.3.9.3 开漏引脚
        4. 7.3.9.4 推挽引脚
        5. 7.3.9.5 四电平输入引脚
      10. 7.3.10 电流检测放大器
        1. 7.3.10.1 电流检测放大器操作
      11. 7.3.11 主动消磁
        1. 7.3.11.1 自动同步整流模式(ASR 模式)
          1. 7.3.11.1.1 自动同步整流(换向模式)
          2. 7.3.11.1.2 自动同步整流(PWM 模式)
        2. 7.3.11.2 自动异步整流模式(AAR 模式)
      12. 7.3.12 逐周期电流限制
        1. 7.3.12.1 具有 100% 占空比输入的逐周期电流限制
      13. 7.3.13 保护功能
        1. 7.3.13.1 VM 电源欠压锁定 (RESET)
        2. 7.3.13.2 AVDD 欠压保护 (AVDD_UV)
        3. 7.3.13.3 GVDD 欠压锁定 (GVDD_UV)
        4. 7.3.13.4 VCP 电荷泵欠压锁定 (CPUV)
        5. 7.3.13.5 过压保护 (OV)
        6. 7.3.13.6 过流保护 (OCP)
          1. 7.3.13.6.1 OCP 锁存关断 (OCP_MODE = 00b)
          2. 7.3.13.6.2 OCP 自动重试 (OCP_MODE = 01b)
          3. 7.3.13.6.3 OCP 仅报告 (OCP_MODE = 10b)
          4. 7.3.13.6.4 OCP 已禁用 (OCP_MODE = 11b)
        7. 7.3.13.7 热警告 (OTW)
        8. 7.3.13.8 热关断 (OTS)
    4. 7.4 器件功能模式
      1. 7.4.1 功能模式
        1. 7.4.1.1 睡眠模式
        2. 7.4.1.2 运行模式
        3. 7.4.1.3 故障复位(CLR_FLT 或 nSLEEP 复位脉冲)
      2. 7.4.2 DRVOFF 功能
    5. 7.5 SPI 通信
      1. 7.5.1 编程
        1. 7.5.1.1 SPI 格式
    6. 7.6 寄存器映射
      1. 7.6.1 状态寄存器
      2. 7.6.2 控制寄存器
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 电源相关建议
      1. 8.2.1 大容量电容
    3. 8.3 布局
      1. 8.3.1 布局指南
      2. 8.3.2 布局示例
      3. 8.3.3 散热注意事项
        1. 8.3.3.1 功率耗散
  10. 器件和文档支持
    1. 9.1 文档支持
    2. 9.2 支持资源
    3. 9.3 商标
    4. 9.4 静电放电警告
    5. 9.5 术语表
  11. 10修订历史记录
  12. 11机械、封装和可订购信息
    1. 11.1 封装选项附录
    2. 11.2 卷带包装信息

封装选项

机械数据 (封装 | 引脚)
  • NLG|28
散热焊盘机械数据 (封装 | 引脚)
订购信息

电流检测放大器操作

DRV8376 上的 SOx 引脚输出的模拟电压与低侧 FET 中流动的电流和增益设置 (GCSA) 的乘积成比例。增益设置可在四个不同级别之间调节,这些级别可通过 GAIN 引脚(在硬件器件型号中)或 GAIN 位(在 SPI 器件型号中)设置。

图 7-20 显示了电流检测放大器的内部架构。电流检测是通过 DRV8376 器件的每个低侧 FET 上的检测 FET 实施的。该电流信息馈送到内部 I/V 转换器,该转换器根据 VREF 引脚上的电压和增益设置在 SOX 引脚上生成 CSA 输出电压。CSA 输出电压可按以下公式计算:

方程式 4. DRV8376
DRV8376 集成电流检测放大器图 7-20 集成电流检测放大器

图 7-21图 7-22 显示了放大器工作范围的详细信息。在双向运行中,0V 输入的放大器输出设置为 VREF/2。差分输入的任何变化都会导致输出乘以 CSA_GAIN 因子发生相应的变化。放大器有一个定义的线性区域,在该区域内它可以保持运行。

DRV8376 双向电流检测输出图 7-21 双向电流检测输出
DRV8376 双向电流检测区域图 7-22 双向电流检测区域
注: 电流检测放大器在输出端仅支持容性负载。TI 建议在电流检测放大器的输出端连接由电阻器和电容器组成的低通滤波器。
注: 电流检测放大器支持动态增益变化。在硬件型号中,增益会通过引脚检测每 1ms 进行一次采样,而任何增益变化均通过 SPI 写入实现(在 SPI 型号中)。收到增益更改命令后,新的增益将在任何 INLx 信号的下个下降沿应用于所有三个电流检测放大器。