ZHCSOS2B October   2022  – July 2024 DRV8411A

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 器件比较
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议运行条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
    6. 6.6 时序图
  8. 典型特性
  9. 详细说明
    1. 8.1 概述
    2. 8.2 功能方框图
    3. 8.3 外部元件
    4. 8.4 特性说明
      1. 8.4.1 电桥控制
        1. 8.4.1.1 并联桥式连接
      2. 8.4.2 电流检测和调节
        1. 8.4.2.1 电流检测
        2. 8.4.2.2 电流调节
      3. 8.4.3 保护电路
        1. 8.4.3.1 过流保护 (OCP)
        2. 8.4.3.2 热关断 (TSD)
        3. 8.4.3.3 欠压锁定 (UVLO)
    5. 8.5 器件功能模式
      1. 8.5.1 工作模式
      2. 8.5.2 低功耗睡眠模式
      3. 8.5.3 故障模式
    6. 8.6 引脚图
      1. 8.6.1 逻辑电平输入
  10. 应用和实现
    1. 9.1 应用信息
      1. 9.1.1 典型应用
        1. 9.1.1.1 步进电机应用
          1. 9.1.1.1.1 设计要求
          2. 9.1.1.1.2 详细设计过程
            1. 9.1.1.1.2.1 步进电机转速
            2. 9.1.1.1.2.2 电流调节
            3. 9.1.1.1.2.3 步进模式
              1. 9.1.1.1.2.3.1 全步进运行
              2. 9.1.1.1.2.3.2 快速衰减下的半步进运行
              3. 9.1.1.1.2.3.3 慢速衰减下的半步进运行
          3. 9.1.1.1.3 应用曲线
        2. 9.1.1.2 双 BDC 电机应用
          1. 9.1.1.2.1 设计要求
          2. 9.1.1.2.2 详细设计过程
            1. 9.1.1.2.2.1 电机电压
            2. 9.1.1.2.2.2 电流调节
          3. 9.1.1.2.3 应用曲线
        3. 9.1.1.3 散热注意事项
          1. 9.1.1.3.1 最大输出电流
          2. 9.1.1.3.2 功率耗散
          3. 9.1.1.3.3 热性能
            1. 9.1.1.3.3.1 稳态热性能
            2. 9.1.1.3.3.2 瞬态热性能
    2. 9.2 电源相关建议
      1. 9.2.1 大容量电容
      2. 9.2.2 电源和逻辑时序
    3. 9.3 布局
      1. 9.3.1 布局指南
      2. 9.3.2 布局示例
  11. 10器件和文档支持
    1. 10.1 文档支持
      1. 10.1.1 相关文档
    2. 10.2 接收文档更新通知
    3. 10.3 社区资源
    4. 10.4 商标
  12. 11修订历史记录
  13. 12机械、封装和可订购信息

封装选项

请参考 PDF 数据表获取器件具体的封装图。

机械数据 (封装 | 引脚)
  • PWP|16
  • RTE|16
散热焊盘机械数据 (封装 | 引脚)
订购信息

电流检测

IPROPI 引脚 AIPROPI 和 BIPROPI 输出与流经 H 桥中的低侧功率 MOSFET 的电流成正比并经过 AIPROPI 调节的模拟电流。可以使用方程式 1 计算出 IPROPI 输出电流。只有当电流在低侧 MOSFET 中从漏极流向源极时,方程式 1 中的 ILSx 才有效。如果电流从源极流向漏极或流经体二极管,则该通道的 ILSx 值为零。例如,如果电桥处于制动、慢速衰减状态,则 IPROPI 外的电流仅与其中一个低侧 MOSFET 中的电流成正比。

方程式 1. IPROPI (μA) = (ILS1 + ILS2) (A) x AIPROPI (μA/A)

“电气特性”表中的 AERR 参数是与 AIPROPI 增益相关的误差。它表示 IOUT 电流中增加的偏移量误差和增益误差带来的综合影响。

电机电流由低侧 FET 上的内部电流镜架构测得,而无需使用外部功率检测电阻,如图 8-5 所示。电流镜架构允许在驱动和制动/低侧慢速衰减期间检测电机绕组电流,从而在典型双向有刷直流电机应用中持续监测电流。在滑行模式下,电流是续流电流,无法被感测到,原因是电流从源极流向漏极。但是,可以在驱动或慢速衰减模式下短暂重新启用驱动器,并在再次切换回滑行模式之前测量此电流,从而对电流进行采样。

DRV8411A 集成电流感测图 8-5 集成电流感测

应将 IPROPI 引脚连接到外部电阻器 (RIPROPI) 以接地,从而利用 IIPROPI 模拟电流输出在 IPROPI 引脚上产生一个成比例电压 (VIPROPI)。这样即可使用标准模数转换器 (ADC) 将负载电流作为 RIPROPI 电阻器两端的压降进行测量。可以根据应用中的预期负载电流来调节 RIPROPI 电阻器的大小,以利用控制器 ADC 的整个量程。此外,DRV8411A 器件还采用了一个内部 IPROPI 电压钳位电路,可相对于 VREF 引脚上的 VVREF 限制 VIPROPI,并在发生输出过流或意外高电流事件时保护外部 ADC。

TI 建议在 VVM 与 ADC 要测量的最大 VIPROPI 电压 (VIPROPI_MAX) 之间设计至少 1.25V 的余量。例如,如果 VVM 为 4.55V 至 11V,则 VIPROPI_MAX 可高达 3.3V。

可以使用方程式 2 计算对应于输出电流的 IPROPI 电压。

方程式 2. VIPROPI (V) = IPROPI (A) x RIPROPI (Ω)

IPROPI 输出带宽受内部电流检测电路的检测延迟时间 (tDELAY) 限制。此时间是指从低侧 MOSFET 启用命令(来自 INx 引脚)到 IPROPI 输出准备就绪这两个时间点之间的延迟。

在 H 桥 PWM 信号中,如果器件在驱动和慢速衰减(制动)之间交替切换,则感测电流的低侧 MOSFET 会持续导通,但感测延迟时间对 IPROPI 输出不会产生任何影响。如果 INx 引脚上的命令禁用低侧 MOSFET(根据节 8.4.1中的逻辑表),则 IPROPI 输出将与输入逻辑信号一同禁用。虽然低侧 MOSFET 在根据器件压摆率(在“电气特性”表中以 tRISE 时间表示)禁用时仍可能传导电流,但 IPROPI 并不表示此关断时间内低侧 MOSFET 中的电流。