ZHCSRF9A December   2022  – October 2023 DRV8461

PRODUCTION DATA  

  1.   1
  2. 特性
  3. 应用
  4. 说明
  5. 修订历史记录
  6. 引脚配置和功能
  7. 规格
    1. 6.1 绝对最大额定值
    2. 6.2 ESD 等级
    3. 6.3 建议的工作条件
    4. 6.4 热性能信息
    5. 6.5 电气特性
      1. 6.5.1 SPI 时序要求
      2. 6.5.2 STEP 和 DIR 时序要求
    6. 6.6 典型特性
  8. 详细说明
    1. 7.1 概述
    2. 7.2 功能方框图
    3. 7.3 特性说明
      1. 7.3.1  运行接口
      2. 7.3.2  步进电机驱动器电流额定值
        1. 7.3.2.1 峰值电流额定值
        2. 7.3.2.2 均方根电流额定值
        3. 7.3.2.3 满量程电流额定值
      3. 7.3.3  PWM 电机驱动器
      4. 7.3.4  微步进分度器
      5. 7.3.5  分度器输出
        1. 7.3.5.1 nHOME 输出
      6. 7.3.6  自动微步模式
      7. 7.3.7  自定义微步进表
      8. 7.3.8  电流调节
        1. 7.3.8.1 内部基准电压
      9. 7.3.9  静止省电模式
      10. 7.3.10 电流调节衰减模式
        1. 7.3.10.1 慢速衰减
        2. 7.3.10.2 混合衰减
        3. 7.3.10.3 智能调优动态衰减
        4. 7.3.10.4 智能调优纹波控制
        5. 7.3.10.5 PWM 关断时间
        6. 7.3.10.6 电流调节消隐时间和抗尖峰脉冲时间
      11. 7.3.11 使用外部电阻器进行电流检测
      12. 7.3.12 静音步进衰减模式
      13. 7.3.13 自动扭矩动态电流调节
        1. 7.3.13.1 自动扭矩学习例程
        2. 7.3.13.2 电流控制环路
        3. 7.3.13.3 PD 控制环路
      14. 7.3.14 电荷泵
      15. 7.3.15 线性稳压器
      16. 7.3.16 VCC 电压电源
      17. 7.3.17 逻辑电平、三电平和四电平引脚图
      18. 7.3.18 展频
      19. 7.3.19 保护电路
        1. 7.3.19.1  VM 欠压锁定
        2. 7.3.19.2  VCP 欠压锁定 (CPUV)
        3. 7.3.19.3  逻辑电源上电复位 (POR)
        4. 7.3.19.4  过流保护 (OCP)
          1. 7.3.19.4.1 锁存关断
          2. 7.3.19.4.2 自动重试
        5. 7.3.19.5  失速检测
        6. 7.3.19.6  开路负载检测 (OL)
        7. 7.3.19.7  过热警告 (OTW)
        8. 7.3.19.8  热关断 (OTSD)
          1. 7.3.19.8.1 锁存关断
          2. 7.3.19.8.2 自动重试
        9. 7.3.19.9  电源电压检测
        10. 7.3.19.10 nFAULT 输出
        11. 7.3.19.11 故障条件汇总
      20. 7.3.20 器件功能模式
        1. 7.3.20.1 睡眠模式
        2. 7.3.20.2 禁用模式
        3. 7.3.20.3 工作模式
        4. 7.3.20.4 nSLEEP 复位脉冲
        5. 7.3.20.5 功能模式汇总
    4. 7.4 编程
      1. 7.4.1 串行外设接口 (SPI) 通信
        1. 7.4.1.1 SPI 格式
        2. 7.4.1.2 用于菊花链配置的多个目标器件的 SPI
        3. 7.4.1.3 用于并行配置的多个目标器件的 SPI
    5. 7.5 寄存器映射
      1. 7.5.1 状态寄存器
        1. 7.5.1.1 FAULT(地址 = 0x00)[默认值 = 00h]
        2. 7.5.1.2 DIAG1(地址 = 0x01)[默认值 = 00h]
        3. 7.5.1.3 DIAG2(地址 = 0x02)[默认值 = 00h]
        4. 7.5.1.4 DIAG3(地址 = 0x03)[默认值 = 00h]
      2. 7.5.2 控制寄存器
        1. 7.5.2.1  CTRL1(地址 = 0x04)[默认值 = 0Fh]
        2. 7.5.2.2  CTRL2(地址 = 0x05)[默认值 = 06h]
        3. 7.5.2.3  CTRL3(地址 = 0x06)[默认值 = 38h]
        4. 7.5.2.4  CTRL4(地址 = 0x07)[默认值 = 49h]
        5. 7.5.2.5  CTRL5(地址 = 0x08)[默认值 = 03h]
        6. 7.5.2.6  CTRL6(地址 = 0x09)[默认值 = 20h]
        7. 7.5.2.7  CTRL7(地址 = 0x0A)[默认值 = FFh]
        8. 7.5.2.8  CTRL8(地址 = 0x0B)[默认值 = 0Fh]
        9. 7.5.2.9  CTRL9(地址 = 0x0C)[默认值 = 10h]
        10. 7.5.2.10 CTRL10(地址 = 0x0D)[默认值 = 80h]
        11. 7.5.2.11 CTRL11(地址 = 0x0E)[默认值 = FFh]
        12. 7.5.2.12 CTRL12(地址 = 0x0F)[默认值 = 20h]
        13. 7.5.2.13 CTRL13(地址 = 0x10)[默认值 = 10h]
        14. 7.5.2.14 CTRL14(地址 = 0x3C)[默认值 = 58h]
      3. 7.5.3 索引寄存器
        1. 7.5.3.1 INDEX1(地址 = 0x11)[默认值 = 80h]
        2. 7.5.3.2 INDEX2(地址 = 0x12)[默认值 = 80h]
        3. 7.5.3.3 INDEX3(地址 = 0x13)[默认值 = 80h]
        4. 7.5.3.4 INDEX4(地址 = 0x14)[默认值 = 82h]
        5. 7.5.3.5 INDEX5(地址 = 0x15)[默认值 = B5h]
      4. 7.5.4 自定义微步进寄存器
        1. 7.5.4.1 CUSTOM_CTRL1(地址 = 0x16)[默认值 = 00h]
        2. 7.5.4.2 CUSTOM_CTRL2(地址 = 0x17)[默认值 = 00h]
        3. 7.5.4.3 CUSTOM_CTRL3(地址 = 0x18)[默认值 = 00h]
        4. 7.5.4.4 CUSTOM_CTRL4(地址 = 0x19)[默认值 = 00h]
        5. 7.5.4.5 CUSTOM_CTRL5(地址 = 0x1A)[默认值 = 00h]
        6. 7.5.4.6 CUSTOM_CTRL6(地址 = 0x1B)[默认值 = 00h]
        7. 7.5.4.7 CUSTOM_CTRL7(地址 = 0x1C)[默认值 = 00h]
        8. 7.5.4.8 CUSTOM_CTRL8(地址 = 0x1D)[默认值 = 00h]
        9. 7.5.4.9 CUSTOM_CTRL9(地址 = 0x1E)[默认值 = 00h]
      5. 7.5.5 自动扭矩寄存器
        1. 7.5.5.1  ATQ_CTRL1(地址 = 0x1F)[默认值 = 00h]
        2. 7.5.5.2  ATQ_CTRL2(地址 = 0x20)[默认值 = 00h]
        3. 7.5.5.3  ATQ_CTRL3(地址 = 0x21)[默认值 = 00h]
        4. 7.5.5.4  ATQ_CTRL4(地址 = 0x22)[默认值 = 20h]
        5. 7.5.5.5  ATQ_CTRL5(地址 = 0x23)[默认值 = 00h]
        6. 7.5.5.6  ATQ_CTRL6(地址 = 0x24)[默认值 = 00h]
        7. 7.5.5.7  ATQ_CTRL7(地址 = 0x25)[默认值 = 00h]
        8. 7.5.5.8  ATQ_CTRL8(地址 = 0x26)[默认值 = 00h]
        9. 7.5.5.9  ATQ_CTRL9(地址 = 0x27)[默认值 = 00h]
        10. 7.5.5.10 ATQ_CTRL10(地址 = 0x28)[默认值 = 08h]
        11. 7.5.5.11 ATQ_CTRL11(地址 = 0x29)[默认值 = 0Ah]
        12. 7.5.5.12 ATQ_CTRL12(地址 = 0x2A)[默认值 = FFh]
        13. 7.5.5.13 ATQ_CTRL13(地址 = 0x2B)[默认值 = 05h]
        14. 7.5.5.14 ATQ_CTRL14(地址 = 0x2C)[默认值 = 0Fh]
        15. 7.5.5.15 ATQ_CTRL15(地址 = 0x2D)[默认值 = 00h]
        16. 7.5.5.16 ATQ_CTRL16(地址 = 0x2E)[默认值 = FFh]
        17. 7.5.5.17 ATQ_CTRL17(地址 = 0x2F)[默认值 = 00h]
        18. 7.5.5.18 ATQ_CTRL18(地址 = 0x30)[默认值 = 00h]
      6. 7.5.6 静音步进寄存器
        1. 7.5.6.1 SS_CTRL1(地址 = 0x31)[默认值 = 00h]
        2. 7.5.6.2 SS_CTRL2(地址 = 0x32)[默认值 = 00h]
        3. 7.5.6.3 SS_CTRL3(地址 = 0x33)[默认值 = 00h]
        4. 7.5.6.4 SS_CTRL4(地址 = 0x34)[默认值 = 00h]
        5. 7.5.6.5 SS_CTRL5(地址 = 0x35)[默认值 = FFh]
  9. 应用和实施
    1. 8.1 应用信息
    2. 8.2 典型应用
      1. 8.2.1 设计要求
      2. 8.2.2 详细设计过程
        1. 8.2.2.1 步进电机转速
      3. 8.2.3 应用性能曲线图
      4. 8.2.4 热应用
        1. 8.2.4.1 功率损耗
        2. 8.2.4.2 导通损耗
        3. 8.2.4.3 开关损耗
        4. 8.2.4.4 由于静态电流造成的功率损耗
        5. 8.2.4.5 总功率损耗
        6. 8.2.4.6 器件结温估算
  10. 散热注意事项
    1. 9.1 散热焊盘
    2. 9.2 PCB 材料推荐
  11. 10电源相关建议
    1. 10.1 大容量电容
    2. 10.2 电源
  12. 11布局
    1. 11.1 布局指南
    2. 11.2 布局示例
  13. 12器件和文档支持
    1. 12.1 文档支持
      1. 12.1.1 相关文档
    2. 12.2 接收文档更新通知
    3. 12.3 支持资源
    4. 12.4 商标
    5. 12.5 静电放电警告
    6. 12.6 术语表
  14. 13机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

PD 控制环路

表 7-26 描述了与 PD 控制环路相关的主要参数:

表 7-26 PD 控制环路的参数

参数

说明

KP[7:0],KD[3:0]

PD 控制环路的比例和微分增益参数。

ATQ_AVG[2:0]

ATQ_CNT 参数是 ATQ_AVG 半个周期数的移动平均值。因此,较高的 ATQ_AVG 值会减慢环路对突然出现的峰值负载需求的响应,但会确保平稳无急冲地过渡到更高的扭矩输出。较低的值会导致环路立即响应突然的负载需求。

  • 010b - 2 周期平均值

  • 100b - 4 周期平均值

  • 111b - 8 周期平均值

  • 其他值:无均值计算

ATQ_FRZ[2:0]

电气半个周期中的延迟,在此之后,电流会随着 PD 环路而变化。值越小,电流就越能更快地增加,以满足峰值负载需求。此参数的范围是 1 至 7。

001b - 响应速度最快,但环路可能变得不稳定

111b - 响应速度最慢,但环路将保持稳定

ATQ_D_THR[7:0]

如果误差变化小于 ATQ_D_THR,则 KD 对校正没有影响。只有当误差变化大于 ATQ_D_THR 时,Kd 才会产生影响。

例如:当 ATQ_D_THR = 10 时,

如果误差变化为 9,则 u(t) = KP * e(t)

如果误差变化为 12,则 u(t) = KP * e(t) + KD * de(t)/dt

ATQ_ERROR_TRUNCATE[3:0]

在 PD 环路公式中使用之前从误差中截断的 LSB 位数。高值会减少电流波形中的任何振荡。

PD 控制算法表示为:

方程式 14. u(t) = KP * e(t) + KD * de(t)/dt

其中,

KP 和 KD = PD 环路常数

u(t) = 控制器的输出

e(t) = 误差信号

  • 一般来说,增加 KP 会增加控制系统的响应速度。

  • 但是,如果 KP 过大,电流波形将开始振荡。

  • 如果 KP 进一步增大,振荡将增大。系统将变得不稳定,甚至可能在失控的情况下振荡。

  • 增大 KD 的值将导致控制系统对误差项的变化做出更强烈的反应,并将提高控制系统的总体响应速度。

  • 建议使用较小的 KD 值,因为微分响应对噪声非常敏感。

  • 当选择非零 KD 值时,为了提高系统的抗噪性能,应使用较高的 ATQ_D_THR 值。

调整 PD 环路参数的指导原则如下:

  • 设置 KP = 1,KD = 0,所有其他 PD 环路参数应为默认值

  • 应用特定于应用的负载分布

  • 如果电机失速,增加 KP、KD,减小 ATQ_D_THR,直到电机停止失速

  • 一旦电机不再失速,请观察恒定负载扭矩下的电流波形

  • 如果电流波形有振荡,请增加 ATQ_FRZ、ATQ_AVG 和 ATQ_ERROR_TRUNCATE

  • 如果 ATQ_FRZ、ATQ_AVG 和 ATQ_ERROR_TRUNCATE 的值超高,则可能会使负载瞬态响应恶化,因此建议再次检查负载瞬态响应,确保 PD 控制环路稳定。

图 7-29 是选择 PD 控制环路参数的流程图。

GUID-20220606-SS0I-PQMZ-HK2W-LWXQBJL1QPLH-low.svg图 7-29 选择 PD 控制环路参数