ZHCSFZ1A January   2017  – July 2018 DRV8886

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. 特性
  2. 应用
  3. 说明
    1.     简化原理图
  4. 修订历史记录
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Indexer Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Stepper Motor Driver Current Ratings
        1. 7.3.1.1 Peak Current Rating
        2. 7.3.1.2 rms Current Rating
        3. 7.3.1.3 Full-Scale Current Rating
      2. 7.3.2  PWM Motor Drivers
      3. 7.3.3  Microstepping Indexer
      4. 7.3.4  Current Regulation
      5. 7.3.5  Controlling RREF With an MCU DAC
      6. 7.3.6  Decay Modes
        1. 7.3.6.1 Mode 1: Slow Decay for Increasing Current, Mixed Decay for Decreasing Current
        2. 7.3.6.2 Mode 2: Mixed Decay for Increasing and Decreasing Current
        3. 7.3.6.3 Mode 3: Slow Decay for Increasing and Decreasing Current
      7. 7.3.7  Blanking Time
      8. 7.3.8  Charge Pump
      9. 7.3.9  Linear Voltage Regulators
      10. 7.3.10 Logic and Multi-Level Pin Diagrams
      11. 7.3.11 Protection Circuits
        1. 7.3.11.1 VM Undervoltage Lockout (UVLO)
        2. 7.3.11.2 VCP Undervoltage Lockout (CPUV)
        3. 7.3.11.3 Overcurrent Protection (OCP)
        4. 7.3.11.4 Thermal Shutdown (TSD)
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Stepper Motor Speed
        2. 8.2.2.2 Current Regulation
        3. 8.2.2.3 Decay Modes
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11器件和文档支持
    1. 11.1 文档支持
      1. 11.1.1 相关文档
    2. 11.2 接收文档更新通知
    3. 11.3 社区资源
    4. 11.4 商标
    5. 11.5 静电放电警告
    6. 11.6 术语表
  12. 12机械、封装和可订购信息

封装选项

机械数据 (封装 | 引脚)
散热焊盘机械数据 (封装 | 引脚)
订购信息

Microstepping Indexer

Built-in indexer logic in the DRV8886 device allows a number of different step modes. The M1 and M0 pins are used to configure the step mode as shown in Table 2.

Table 2. Microstepping Settings

M1 M0 STEP MODE
0 0 Full step (2-phase excitation) with 71% current
0 1 1/16 step
1 0 1/2 step
1 1 1/4 step
0 Z 1/8 step
1 Z Non-circular 1/2 step

Table 3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT current is the sine of the electrical angle and the BOUT current is the cosine of the electrical angle. Positive current is defined as current flowing from the xOUT1 pin to the xOUT2 pin while driving.

At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed.

On power-up or when exiting sleep mode, keep the STEP pin logic low, otherwise the indexer advances one step.

NOTE

If the step mode is changed from full, 1/2, 1/4, 1/8, or 1/16 to full, 1/2, 1/4, 1/8, or 1/16 while stepping, the indexer advances to the next valid state for the new step mode setting at the rising edge of STEP. If the step mode is changed from or to noncircular 1/2 step the indexer goes immediately to the valid state for that mode.

The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage lockout, or after exiting sleep mode. Table 3 lists the home state in red.

Table 3. Microstepping Relative Current Per Step (DIR = 1)

FULL STEP 1/2 STEP 1/4 STEP 1/8 STEP 1/16 STEP ELECTRICAL ANGLE (DEGREES) AOUT CURRENT (% FULL-SCALE) BOUT CURRENT (% FULL-SCALE)
1 1 1 1 0.000° 0% 100%
2 5.625° 10% 100%
2 3 11.250° 20% 98%
4 16.875° 29% 96%
2 3 5 22.500° 38% 92%
6 28.125° 47% 88%
4 7 33.750° 56% 83%
8 39.375° 63% 77%
1 2 3 5 9 45.000° 71% 71%
10 50.625° 77% 63%
6 11 56.250° 83% 56%
12 61.875° 88% 47%
4 7 13 67.500° 92% 38%
14 73.125° 96% 29%
8 15 78.750° 98% 20%
16 84.375° 100% 10%
3 5 9 17 90.000° 100% 0%
18 95.625° 100% –10%
10 19 101.250° 98% –20%
20 106.875° 96% –29%
6 11 21 112.500° 92% –38%
22 118.125° 88% –47%
12 23 123.750° 83% –56%
24 129.375° 77% –63%
2 4 7 13 25 135.000° 71% –71%
26 140.625° 63% –77%
14 27 146.250° 56% –83%
28 151.875° 47% –88%
8 15 29 157.500° 38% –92%
30 163.125° 29% –96%
16 31 168.750° 20% –98%
32 174.375° 10% –100%
5 9 17 33 180.000° 0% –100%
34 185.625° –10% –100%
18 35 191.250° –20% –98%
36 196.875° –29% –96%
10 19 37 202.500° –38% –92%
38 208.125° –47% –88%
20 39 213.750° –56% –83%
40 219.375° –63% –77%
3 6 11 21 41 225.000° –71% –71%
42 230.625° –77% –63%
22 43 236.250° –83% –56%
44 241.875° –88% –47%
12 23 45 247.500° –92% –38%
46 253.125° –96% –29%
24 47 258.750° –98% –20%
48 264.375° –100% –10%
7 13 25 49 270.000° –100% 0%
50 275.625° –100% 10%
26 51 281.250° –98% 20%
52 286.875° –96% 29%
14 27 53 292.500° –92% 38%
54 298.125° –88% 47%
28 55 303.750° –83% 56%
56 309.375° –77% 63%
4 8 15 29 57 315.000° –71% 71%
58 320.625° –63% 77%
30 59 326.250° –56% 83%
60 331.875° –47% 88%
16 31 61 337.500° –38% 92%
62 343.125° –29% 96%
32 63 348.750° –20% 98%
64 354.375° –10% 100%
1 1 1 1 360.000° 0% 100%

Table 4 shows the noncircular 1/2–step operation. This stepping mode consumes more power than circular 1/2-step operation, but provides a higher torque at high motor rpm.

Table 4. Non-Circular 1/2-Stepping Current

NON-CIRCULAR 1/2-STEP AOUT CURRENT
(% FULL-SCALE)
BOUT CURRENT
(% FULL-SCALE)
ELECTRICAL ANGLE (DEGREES)
1 0 100 0
2 100 100 45
3 100 0 90
4 100 –100 135
5 0 –100 180
6 –100 –100 225
7 –100 0 270
8 –100 100 315